ABSTRACT
OBJECTIVE: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.
Subject(s)
Dopamine , Lewy Body Disease , Machine Learning , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Male , Female , Aged , Synucleinopathies/diagnostic imaging , Middle Aged , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Dopamine/metabolism , Tomography, Emission-Computed, Single-Photon , Presynaptic Terminals/metabolism , Dopaminergic ImagingABSTRACT
BACKGROUND: Cognitive reserve (CR) is an expression of brain resilience in response to damage. Education, occupational experience and leisure activities are thought to increase CR and have beneficial effects on global cognition and cognitive decline in Parkinson's disease (PD). We aimed to disclose brain metabolic and dopaminergic correlates of CR in de-novo PD patients. METHODS: Sixty-two drug-naïve de-novo PD patients underwent [18F]FDG-PET and DAT-SPECT. CR was quantified through the Cognitive-Reserve-Index questionnaire including total-CR and 3 subscores (educational-CR, occupational-CR, leisure-CR). Specific binding ratios (SBRs) and Z-scores in basal ganglia were obtained with 'BasGan-V2'. Z-scores were used as dependent variables in general linear models to assess the interaction between dopaminergic function and CR. Voxel-based correlation between brain metabolism and CR-scores and between SBR and [18F]FDG-PET was evaluated using SPM12 (P<0.05 FWE-corrected at peak and cluster level considered significant). RESULTS: Dopaminergic deficit in the most affected hemisphere (MAH) putamen was significantly less marked in higher CR patients (Z-score -1.7±0.1 highly-educated versus -2.1±0.1 poorly-educated, P<0.02). Total and leisure-related-CR resulted correlated directly with z-scores of the MAH putamen (P<0.018 and P<0.003) and inversely with brain metabolism in both cerebellar hemispheres (P<0.001). MAH-putamen SBR correlated directly with metabolism in occipital and parietal cortex (P<0.003) and inversely in cerebellar hemispheres (P<0.02). CONCLUSIONS: CR proxies demonstrated to correlate directly with dopaminergic function and inversely with metabolism in cerebellar hemispheres in de-novo PD patients. The present multi-modal approach including both metabolic and dopaminergic correlates of CR allowed to identify possible compensation mechanisms, highlighting a potential role of the cerebellum that deserves further investigation.
Subject(s)
Dopamine , Fluorodeoxyglucose F18 , Parkinson Disease , Positron-Emission Tomography , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Male , Female , Middle Aged , Aged , Dopamine/metabolism , Fluorodeoxyglucose F18/metabolism , Brain/metabolism , Brain/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Cognitive ReserveABSTRACT
BACKGROUND: This study aimed to estimate if the altered sphygmic wave transmission may affect the left ventricular (LV) contractile function in patients undergoing endovascular aortic repair (EVAR). METHODS: A prospective single-centre study was carried out on consecutive patients undergoing EVAR for abdominal aortic aneurysm. A preoperative and 6-month single photon emission computed tomography (SPECT) with arterial stiffness measurement were performed to evaluate variations in pressure wave curve and myocardial perfusion parameters. RESULTS: From 2018 to 2020 a total of 16 patients were included in the study. Among the parameters evaluated, we found a measurable reduction of the reflected wave transit time from pre- to postoperative period, for both stress (115.13 ± 7.2 ms-111.1 ± 7.0 ms, p = .08) and rest SPECT acquisitions (115.3 ± 6.2 ms-112.2 ± 5.6 ms, p = .1). Unidirectional increase of both LV end-systolic volume (34 ± 9 mL-39 ± 8 mL, p = .02) and end-diastolic volume (85 ± 34 mL-89 ± 29 mL, p = .6) was also observed. Lastly, the ratio between the end-systolic pressure and the end-systolic volume (maximal systolic myocardial stiffness) decreased from 3.6 ± 1.5 mmHg/mL to 2.66 ± .74 mmHg/mL (p = .03). CONCLUSIONS: Our data showed that EVAR induced an altered transmission of the sphygmic wave associated with an early LV contractile impairment.
Subject(s)
Aortic Aneurysm, Abdominal , Ventricular Dysfunction, Left , Humans , Prospective Studies , Endovascular Aneurysm Repair , Ventricular Function, Left , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/surgeryABSTRACT
PURPOSE: A cut-off of -2 z-score for striatal or putaminal SBR has been to date arbitrarily used to define an abnormal DaT SPECT in patients with suspected neurodegenerative parkinsonism. We aimed to experimentally identify the most accurate z-score cut-offs for SBR of striatal and substriatal regions to independently discriminate PD and DLB, with respect to essential tremor (ET) and Alzheimer's disease (AD) respectively. METHODS: Two-hundred twenty-five patients undergoing DaT SPECT were enrolled (seventy-five de novo PD, eighty ET, fifty DLB, and twenty AD). Semiquantification was computed by means of Datquant® software which returns measures of striatal SBR and z-scores with respect to 118 healthy volunteers belonging to the Parkinson's Progression Markers Initiative (PPMI). ROC analysis was used to identify most accurate cut-offs for z-score for striatum and substriatal regions (clinical diagnosis at follow-up as gold standard). RESULTS: Posterior putamen of the most affected hemisphere (MAH) with a z-score cut-off of - 1.27 demonstrated the highest accuracy to differentiate between PD and ET (sensitivity 0.97, specificity 0.94). The whole putamen (z-score cut-off - 0.96) was the most accurate parameter to support the diagnosis of DLB (sensitivity 0.74, specificity 0.95). Putamen to caudate ratio was accurate to detect PD (especially in early stages) while not DLB patients. CONCLUSION: We experimentally demonstrated that different substriatal regions and cut-offs for z-score of SBR should be considered to support the diagnosis of either PD or DLB. The identified less conservative cut-offs showed higher sensitivity without a measurable reduction in specificity with respect to the arbitrary - 2 z-score.
Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Lewy Body Disease/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolismABSTRACT
PURPOSE: FDG-PET is an established supportive biomarker in dementia with Lewy bodies (DLB), but its diagnostic accuracy is unknown at the mild cognitive impairment (MCI-LB) stage when the typical metabolic pattern may be difficultly recognized at the individual level. Semiquantitative analysis of scans could enhance accuracy especially in less skilled readers, but its added role with respect to visual assessment in MCI-LB is still unknown. METHODS: We assessed the diagnostic accuracy of visual assessment of FDG-PET by six expert readers, blind to diagnosis, in discriminating two matched groups of patients (40 with prodromal AD (MCI-AD) and 39 with MCI-LB), both confirmed by in vivo biomarkers. Readers were provided in a stepwise fashion with (i) maps obtained by the univariate single-subject voxel-based analysis (VBA) with respect to a control group of 40 age- and sex-matched healthy subjects, and (ii) individual odds ratio (OR) plots obtained by the volumetric regions of interest (VROI) semiquantitative analysis of the two main hypometabolic clusters deriving from the comparison of MCI-AD and MCI-LB groups in the two directions, respectively. RESULTS: Mean diagnostic accuracy of visual assessment was 76.8 ± 5.0% and did not significantly benefit from adding the univariate VBA map reading (77.4 ± 8.3%) whereas VROI-derived OR plot reading significantly increased both accuracy (89.7 ± 2.3%) and inter-rater reliability (ICC 0.97 [0.96-0.98]), regardless of the readers' expertise. CONCLUSION: Conventional visual reading of FDG-PET is moderately accurate in distinguishing between MCI-LB and MCI-AD, and is not significantly improved by univariate single-subject VBA but by a VROI analysis built on macro-regions, allowing for high accuracy independent of reader skills.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/metabolism , Fluorodeoxyglucose F18/metabolism , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Positron-Emission Tomography/methods , Reproducibility of ResultsABSTRACT
BACKGROUND: Dopamine transporter single photon-emission computed tomography (DAT-SPECT) is the strongest risk factor for phenoconversion in patients with idiopathic rapid eye movement (REM)-sleep behavior disorder (iRBD). However, it might be used as a second-line stratification tool in clinical trials, because it is expensive and mini-invasive. OBJECTIVE: Aim of the study is to investigate whether other cost-effective and non-invasive biomarkers may be proposed as first-line stratification tools. METHODS: Forty-seven consecutive iRBD patients (68.53 ± 7.16 years, 40 males) underwent baseline clinical and neuropsychological assessment, olfaction test, resting electroencephalogram (EEG), and DAT-SPECT. All patients underwent 6 month-based clinical follow-up to investigate the emergence of parkinsonism and/or dementia. Survival analysis and Cox regression were used to estimate conversion risk. RESULTS: Seventeen patients developed an overt synucleinopathy (eight Parkinsonism and nine dementia) 32.8 ± 22 months after diagnosis. The strongest risk factors were putamen specific to non-displaceable binding ratio (SBR) (hazard ratio [HR], 7.3), attention/working memory cognitive function (NPS-AT/WM) (HR, 5.9), EEG occipital mean frequency (HR, 2.7) and clinical motor assessment (HR, 2.3). On multivariate Cox-regression analysis, only putamen SBR and NPS-AT/WM significantly contributed to the model (HR, 6.2, 95% confidence interval [CI], 1.9-19.8). At post-hoc analysis, the trail-making test B (TMT-B) was the single most efficient first-line stratification tool that allowed to reduce the number of eligible subjects to 76.6% (sensitivity 1, specificity 0.37). Combining TMT-B and DAT-SPECT further reduced the sample to 66% (sensitivity 0.88, specificity 0.47). CONCLUSION: The TMT-B seems to be a cost-effective and efficient first-line screening tool, to be used to select patients that deserve DAT-SPECT as second-line screening tool for disease-modifying clinical trials. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Parkinsonian Disorders , REM Sleep Behavior Disorder , Synucleinopathies , Aged , Female , Humans , Male , Middle Aged , Putamen/metabolism , REM Sleep Behavior Disorder/metabolism , Tomography, Emission-Computed, Single-PhotonABSTRACT
PURPOSE: The risk of relapse of differentiated thyroid carcinomas (DTC) and their indication for radioactive iodine therapy (RAI) are assessed according to ATA risk stratification system principally based on tumor-nodes-metastasis (TNM) staging. However, while establishing the indication for RAI may be a "dilemma," performing it can improve the risk stratification. We aimed to evaluate whether (1) the stratification of risk of recurrence differs when TNM is considered with or without peri-RAI findings and (2) the assessment of the risk of disease-specific mortality is improved by adding age and gender. METHODS: From our database, all DTC patients treated with thyroidectomy and RAI from 1992 to 2017 were included. Subjects with a follow-up shorter than 1 year and positive thyroid antibodies were excluded. Patients were classified into (1) a three-category ATA model based on TNM (basic model) and (2) a five-category model based on TNM plus peri-RAI findings, i.e., thyroglobulin and 131I whole-body scan (advanced model). Relapse was proven by histology and/or imaging. Differences in disease-free survival (DFS) and overall survival (OS) were assessed. RESULTS: We enrolled 907 patients; of these, 4.4% died and 21% suffered recurrence. According to the basic model, there were 11.8% high-risk, 32.9% intermediate-risk, and 55.3% low-risk patients. According to the advanced model, 29.9% of patients were re-classified in a higher risk category and the five categories of this model displayed significantly different risks of relapse and death. The estimate of DFS was significantly higher in the advanced model than in the basic one (ΔC-index = + 6.8%, P < .001). By adding age and gender to the advanced model, the highest performance in predicting death was achieved (ΔC-index = + 5.1%, P < .001). CONCLUSIONS: The peri-RAI findings are essential in order to carefully stratify the risk of DTC recurrence. Integrating these data with age and gender enables those cases at highest risk of death to be identified.
Subject(s)
Iodine Radioisotopes , Thyroid Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Neoplasm Recurrence, Local , Retrospective Studies , Thyroglobulin , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/surgery , ThyroidectomyABSTRACT
INTRODUCTION: We assessed the influence of education as a proxy of cognitive reserve and age on the dementia with Lewy bodies (DLB) metabolic pattern. METHODS: Brain 18F-fluorodeoxyglucose positron emission tomography and clinical/demographic information were available in 169 probable DLB patients included in the European DLB-consortium database. Principal component analysis identified brain regions relevant to local data variance. A linear regression model was applied to generate age- and education-sensitive maps corrected for Mini-Mental State Examination score, sex (and either education or age). RESULTS: Age negatively covaried with metabolism in bilateral middle and superior frontal cortex, anterior and posterior cingulate, reducing the expression of the DLB-typical cingulate island sign (CIS). Education negatively covaried with metabolism in the left inferior parietal cortex and precuneus (making the CIS more prominent). DISCUSSION: These findings point out the importance of tailoring interpretation of DLB biomarkers considering the concomitant effect of individual, non-disease-related variables such as age and cognitive reserve.
Subject(s)
Alzheimer Disease , Educational Status , Frontal Lobe/metabolism , Gyrus Cinguli/metabolism , Lewy Body Disease/metabolism , Age Factors , Aged , Brain/metabolism , Europe , Fluorodeoxyglucose F18/metabolism , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Positron-Emission TomographyABSTRACT
In cognitively normal patients, mild hyperglycemia selectively decreases 18F-Fluorodeoxyglucose (FDG) uptake in the posterior brain, reproducing Alzheimer disease pattern, hampering the diagnostic accuracy of this widely used tool. This phenomenon might involve either a heterogeneous response of glucose metabolism or a different sensitivity to hyperglycemia-related redox stress. Indeed, previous studies reported a close link between FDG uptake and activation of a specific pentose phosphate pathway (PPP), triggered by hexose-6P-dehydrogenase (H6PD) and contributing to fuel NADPH-dependent antioxidant responses in the endoplasmic reticulum (ER). To clarify this issue, dynamic positron emission tomography was performed in 40 BALB/c mice four weeks after administration of saline (n = 17) or 150 mg/kg streptozotocin (n = 23, STZ). Imaging data were compared with biochemical and histological indexes of glucose metabolism and redox balance. Cortical FDG uptake was homogeneous in controls, while it was selectively decreased in the posterior brain of STZ mice. This difference was independent of the activity of enzymes regulating glycolysis and cytosolic PPP, while it was paralleled by a decreased H6PD catalytic function and enhanced indexes of oxidative damage. Thus, the relative decrease in FDG uptake of the posterior brain reflects a lower activation of ER-PPP in response to hyperglycemia-related redox stress in these areas.
Subject(s)
Brain/pathology , Diabetes Mellitus, Experimental/physiopathology , Endoplasmic Reticulum/pathology , Fluorodeoxyglucose F18/metabolism , Glycolysis , Hyperglycemia/complications , Positron-Emission Tomography/methods , Animals , Biological Transport , Brain/diagnostic imaging , Brain/metabolism , Endoplasmic Reticulum/metabolism , Male , Mice , Mice, Inbred BALB C , Oxidation-Reduction , Pentose Phosphate Pathway , Radiopharmaceuticals/metabolismABSTRACT
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is a promising tool to support the evaluation of response to either target therapies or immunotherapy with immune checkpoint inhibitors both in clinical trials and, in selected patients, at the single patient's level. The present review aims to discuss available evidence related to the use of [18F]FDG PET (Positron Emission Tomography) to evaluate the response to target therapies and immune checkpoint inhibitors. Criteria proposed for the standardization of the definition of the PET-based response and complementary value with respect to morphological imaging are commented on. The use of PET-based assessment of the response through metabolic pathways other than glucose metabolism is also relevant in the framework of personalized cancer treatment. A brief discussion of the preliminary evidence for the use of non-FDG PET tracers in the evaluation of the response to new therapies is also provided.
Subject(s)
Immunotherapy/methods , Positron-Emission Tomography/statistics & numerical data , Humans , Immunotherapy/statistics & numerical data , Positron-Emission Tomography/methods , Radiology, Interventional/methods , Radiology, Interventional/statistics & numerical data , Treatment OutcomeABSTRACT
Background: Discrepancy between caregiver and patient assessments of apathy in mild cognitive impairment (MCI) is considered an index of apathy unawareness, independently predicting progression to AD dementia. However, its neural underpinning are uninvestigated. Objective: To explore the [18F]FDG PET-based metabolic correlates of apathy unawareness measured through the discrepancy between caregiver and patient self-report, in patients diagnosed with MCI. Methods: We retrospectively studied 28 patients with an intermediate or high likelihood of MCI-AD, progressed to dementia over an average of two years, whose degree of apathy was evaluated by means of the Apathy Evaluation Scale (AES) for both patients (PT-AES) and caregivers (CG-AES). Voxel-based analysis at baseline was used to obtain distinct volumes of interest (VOIs) correlated with PT-AES, CG-AES, or their absolute difference (DISCR-AES). The resulting DISCR-AES VOI count densities were used as covariates in an inter-regional correlation analysis (IRCA) in MCI-AD patients and a group of matched healthy controls (HC). Results: DISCR-AES negatively correlated with metabolism in bilateral parahippocampal gyrus, posterior cingulate cortex, and thalamus, PT-AES score with frontal and anterior cingulate areas, while there was no significant correlation between CG-AES and brain metabolism. IRCA revealed that MCI-AD patients exhibited reduced metabolic/functional correlations of the DISCR-AES VOI with the right cingulate gyrus and its anterior projections compared to HC. Conclusions: Apathy unawareness entails early disruption of the limbic circuitry rather than the classical frontal-subcortical pathways typically associated with apathy. This reaffirms apathy unawareness as an early and independent measure in MCI-AD, marked by distinct pathophysiological alterations.
Subject(s)
Alzheimer Disease , Apathy , Cognitive Dysfunction , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Humans , Apathy/physiology , Male , Female , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Cognitive Dysfunction/metabolism , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Alzheimer Disease/metabolism , Retrospective Studies , Limbic System/diagnostic imaging , Limbic System/metabolism , Neuropsychological Tests , Aged, 80 and over , Middle Aged , Caregivers/psychology , Awareness/physiologyABSTRACT
Unspecific bone uptake (UBU) related to [18F]PSMA-1007 PET/CT imaging represents a clinical challenge. We aimed to assess whether a combination of clinical, biochemical, and imaging parameters could predict skeletal metastases in patients with [18F]PSMA-1007 bone focal uptake, aiding in result interpretation. Methods: We retrospectively analyzed [18F]PSMA-1007 PET/CT performed in hormone-sensitive prostate cancer (PCa) patients at 3 tertiary-level cancer centers. A fourth center was involved in performing an external validation. For each, a volume of interest was drawn using a threshold method to extract SUVmax, SUVmean, PSMA tumor volume, and total lesion PSMA. The same volume of interest was applied to CT images to calculate the mean Hounsfield units (HUmean) and maximum Hounsfield units. Clinical and laboratory data were collected from electronic medical records. A composite reference standard, including follow-up histopathology, biochemistry, and imaging data, was used to distinguish between PCa bone metastases and UBU. PET readers with less (n = 2) or more (n = 2) experience, masked to the reference standard, were asked to visually rate a subset of focal bone uptake (n = 178) as PCa metastases or not. Results: In total, 448 bone [18F]PSMA-1007 focal uptake specimens were identified in 267 PCa patients. Of the 448 uptake samples, 188 (41.9%) corresponded to PCa metastases. Ongoing androgen deprivation therapy at PET/CT (P < 0.001) with determination of SUVmax (P < 0.001) and HUmean (P < 0.001) independently predicted bone metastases. A composite prediction score, the bone uptake metastatic probability (BUMP) score, achieving an area under the receiver-operating-characteristic curve (AUC) of 0.87, was validated through a 10-fold internal and external validation (n = 89 bone uptake, 51% metastatic; AUC, 0.92). The BUMP score's AUC was significantly higher than that of HUmean (AUC, 0.62) and remained high among lesions with HUmean in the first tertile (AUC, 0.80). A decision-curve analysis showed a higher net benefit with the score. Compared with the visual assessment, the BUMP score provided added value in terms of specificity in less-experienced PET readers (88% vs. 54%, P < 0.001). Conclusion: The BUMP score accurately distinguished UBU from bone metastases in PCa patients with [18F]PSMA-1007 focal bone uptake at PET imaging, offering additional value compared with the simple assessment of the osteoblastic CT correlate. Its use could help clinicians interpret imaging results, particularly those with less experience, potentially reducing the risk of patient overstaging.
Subject(s)
Bone Neoplasms , Oligopeptides , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Aged , Retrospective Studies , Bone Neoplasms/secondary , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/metabolism , Middle Aged , Niacinamide/analogs & derivatives , Fluorine Radioisotopes , Biological Transport , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Aged, 80 and overABSTRACT
The last version of the FIGO classification recommended imaging tools to complete the clinical assessment of patients with cervical cancer. However, the preferable imaging approach is still unclear. We aimed to explore the prognostic power of Magnetic Resonance Imaging (MRI), contrast-enhanced Computed Tomography (ceCT), and [18F]-Fluorodeoxyglucose Positron Emission Tomography ([18F]FDG-PET)/CT in patients staged for locally advanced cervical cancer (LACC, FIGO stages IB3-IVA). Thirty-six LACC patients (mean age 55.47 ± 14.01, range 31-82) were retrospectively enrolled. All of them underwent MRI, ceCT and [18F]FDG-PET/CT before receiving concurrent chemoradiotherapy. A median dose of 45 Gy (range 42-50.4; 25-28 fractions, 5 fractions per week, 1 per day) was delivered through the external-beam radiation therapy (EBRT) on the pelvic area, while a median dose of 57.5 Gy (range 16-61.1; 25-28 fractions, 5 fractions per week, 1 per day) was administered on metastatic nodes. The median doses for brachytherapy treatment were 28 Gy (range 28-30; 4-5 fractions, 1 every other day). Six cycles of cisplatin or carboplatin were administered weekly. The study endpoints were recurrence-free survival (RFS) and overall survival (OS). Metastatic pelvic lymph nodes at MRI independently predicted RFS (HR 13.271, 95% CI 1.730-101.805; P = 0.027), while metastatic paraaortic lymph nodes at [18F]FDG-PET/CT independently predicted both RFS (HR 11.734, 95% CI 3.200-43.026; P = .005) and OS (HR 13.799, 95% CI 3.378-56.361; P < 0.001). MRI and [18F]FDG-PET/CT findings were incorporated with clinical evidences into the FIGO classification. With respect to the combination of clinical, MRI and ceCT data, the use of next-generation imaging (NGI) determined a stage migration in 10/36 (27.7%) of patients. Different NGI-based FIGO classes showed remarkably different median RFS (stage IIB: not reached; stage IIIC1: 44 months; stage IIIC2: 3 months; P < 0.001) and OS (stage IIB: not reached; stage IIIC1: not reached; stage IIIC2: 14 months; P < 0.001). A FIGO classification based on the combination of MRI and [18F]FDG-PET/CT might predict RFS and OS of LACC patients treated with concurrent chemoradiotherapy.
Subject(s)
Fluorodeoxyglucose F18 , Uterine Cervical Neoplasms , Female , Humans , Adult , Middle Aged , Aged , Prognosis , Positron Emission Tomography Computed Tomography/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/therapy , Radiopharmaceuticals , Retrospective Studies , Positron-Emission Tomography , Chemoradiotherapy/adverse effects , Magnetic Resonance Imaging , Neoplasm StagingABSTRACT
BACKGROUND: Previous studies reported mitochondrial and endoplasmic reticulum redox stress in peripheral blood mononucleated cells (PBMCs) of treatment-naïve Hodgkin lymphoma (HL) patients. Here, we assessed whether this response also applies to non-HL (NHL) patients, and whether the oxidative damage is a selective feature of PBMCs or, rather, also affects tissues not directly involved in the inflammatory response. METHODS: Isolated PBMCs of 28 HL, 9 diffuse large B cell lymphoma, 8 less aggressive-NHL, and 45 controls underwent flow cytometry to evaluate redox stress and uptake of the glucose analogue 2-NBDG. This analysis was complemented with the assay of malondialdehyde (MDA) levels and enzymatic activity of glucose-6P-dehydrogenase and hexose-6P-dehydrogenase (H6PD). In all lymphoma patients, 18F-fluoro-deoxyglucose uptake was estimated in the myocardium and skeletal muscles. RESULTS: Mitochondrial reactive oxygen species generation and MDA levels were increased only in HL patients as well as H6PD activity and 2-NBDG uptake. Similarly, myocardial FDG retention was higher in HL than in other groups as opposed to a similar tracer uptake in the skeletal muscle. CONCLUSIONS: Redox stress of PBMCs is more pronounced in HL with respect to both NHL groups. This phenomenon is coherent with an increased activity of H6PD that also extends to the myocardium.
ABSTRACT
Purpose To evaluate the role of 2-[18F]FDGPET/CT in the follow-up of radioiodine refractory thyroid cancer (RR-TC). Methods Forty-six 2-[18F]FDGPET/CT scans from 14 RR-TC patients were considered. Thyroid function tests: thyroglobulin (Tg), levothyroxine (LT4), and tyrosine-kinases inhibitors (TKIs) assumptions were recorded. Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) were calculated from each scan and correlated with clinical parameters and the overall survival (OS). Results Baseline TLG and MTV predicted OS (p = 0.027 and p = 0.035), and negative correlation with OS was also confirmed when the same parameters were measured in follow-up scans (p = 0.015 and p = 0.021). Tg also correlated with the OS; (p = 0.014; p = 0.019 and p = 0.009). However, TLG and MTV were not significantly correlated with Tg levels. MTV and TLG variation in time were reduced during TKI therapy (p = 0.045 and p = 0.013). Conclusions 2-[18F]FDGPET/CT confirmed its prognostic role at the first assessment and during the follow-up of RR-TC patients. 2-[18F]FDGPET/CT parameters seem at least partially independent from Tg. TKI therapy resulted in a measurable effect on the variation of 2-[18F]FDGPET/CT parameters over time.
ABSTRACT
The role of 2-deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the management of prostate cancer (PCa) patients is increasingly recognised. However, its clinical role is still controversial. Many published studies showed that FDG PET/CT might have a prognostic value in the metastatic castration-resistant phase of the disease, but its role in other settings of PCa and, more importantly, its impact on final clinical management remains to be further investigated. We describe a series of six representative clinical cases of PCa in different clinical settings, but all characterised by a measurable clinical impact of FDG PET/CT on the patients' management. Starting from their clinical history, we report a concise narrative literature review on the advantages and limitations of FDG PET/CT beyond its prognostic value in PCa. What emerges is that in selected cases, this imaging technique may represent a useful tool in managing PCa patients. However, in the absence of dedicated studies to define the optimal clinical setting of its application, no standard recommendations on its use in PCa patients can be made.
ABSTRACT
OBJECTIVE: Androgen deprivation therapy alters body composition promoting a significant loss in skeletal muscle (SM) mass through inflammation and oxidative damage. We verified whether SM anthropometric composition and metabolism are associated with unfavourable overall survival (OS) in a retrospective cohort of metastatic castration-resistant prostate cancer (mCRPC) patients submitted to 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) imaging before receiving Radium-223. PATIENTS AND METHODS: Low-dose CT were opportunistically analysed using a cross-sectional approach to calculate SM and adipose tissue areas at the third lumbar vertebra level. Moreover, a 3D computational method was used to extract psoas muscles to evaluate their volume, Hounsfield Units (HU) and FDG retention estimated by the standardized uptake value (SUV). Baseline established clinical, lab and imaging prognosticators were also recorded. RESULTS: SM area predicted OS at univariate analysis. However, this capability was not additive to the power of mean HU and maximum SUV of psoas muscles volume. These factors were thus combined in the Attenuation Metabolic Index (AMI) whose power was tested in a novel uni- and multivariable model. While Prostate-Specific Antigen (PSA), Alkaline Phosphatase (ALP), Lactate Dehydrogenase and Hemoglobin, Metabolic Tumor Volume, Total Lesion Glycolysis and AMI were associated with long-term OS at the univariate analyses, only PSA, ALP and AMI resulted in independent prognosticator at the multivariate analysis. CONCLUSION: The present data suggest that assessing individual 'patients' SM metrics through an opportunistic operator-independent computational analysis of FDG PET/CT imaging provides prognostic insights in mCRPC patients candidates to receive Radium-223.
Subject(s)
Prostatic Neoplasms, Castration-Resistant , Radium , Androgen Antagonists/therapeutic use , Benchmarking , Fluorodeoxyglucose F18 , Humans , Male , Muscle, Skeletal/metabolism , Positron Emission Tomography Computed Tomography/methods , Prognosis , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radium/therapeutic use , Retrospective StudiesABSTRACT
We describe the case of an 82-year-old man who underwent 68 Ga-prostate-specific membrane antigen-11 (68 Ga-PSMA-11) positron emission tomography/computed tomography (PET/CT) for the restaging of prostate carcinoma. 68 Ga-PSMA-11 PET/CT unexpectedly showed increased tracer uptake homogenously involving the axial and appendicular bone marrow and the spleen, not characteristic for metastatic prostate disease. Further investigations revealed that 2 months before the patient underwent bone marrow biopsy, which showed the occurrence of monolinear myelodysplasia.
ABSTRACT
Musculoskeletal (MSK) pathologies are one of the leading causes of disability worldwide. However, treatment options and understanding of pathogenetic processes are still partially unclear, mainly due to a limited ability in early disease detection and response to therapy assessment. In this scenario, thanks to a strong technological advancement, structural imaging is currently established as the gold-standard of diagnosis in many MSK disorders but each single diagnostic modality (plain films, high-resolution ultrasound, computed tomography and magnetic resonance) still suffer by a low specificity regarding the characterization of inflammatory processes, the quantification of inflammatory activity levels, and the degree of response to therapy. To overcome these limitations, molecular imaging techniques may play a promising role. Starting from the strengths and weaknesses of structural anatomical imaging, the present narrative review aims to highlight the promising role of molecular imaging in the assessment of non-neoplastic MSK diseases with a special focus on its role to monitor treatment response.