Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Acta Neuropathol ; 147(1): 13, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38194050

ABSTRACT

The development of the cerebral cortex involves a series of dynamic events, including cell proliferation and migration, which rely on the motor protein dynein and its regulators NDE1 and NDEL1. While the loss of function in NDE1 leads to microcephaly-related malformations of cortical development (MCDs), NDEL1 variants have not been detected in MCD patients. Here, we identified two patients with pachygyria, with or without subcortical band heterotopia (SBH), carrying the same de novo somatic mosaic NDEL1 variant, p.Arg105Pro (p.R105P). Through single-cell RNA sequencing and spatial transcriptomic analysis, we observed complementary expression of Nde1/NDE1 and Ndel1/NDEL1 in neural progenitors and post-mitotic neurons, respectively. Ndel1 knockdown by in utero electroporation resulted in impaired neuronal migration, a phenotype that could not be rescued by p.R105P. Remarkably, p.R105P expression alone strongly disrupted neuronal migration, increased the length of the leading process, and impaired nucleus-centrosome coupling, suggesting a failure in nucleokinesis. Mechanistically, p.R105P disrupted NDEL1 binding to the dynein regulator LIS1. This study identifies the first lissencephaly-associated NDEL1 variant and sheds light on the distinct roles of NDE1 and NDEL1 in nucleokinesis and MCD pathogenesis.


Subject(s)
Lissencephaly , Humans , Lissencephaly/genetics , Cell Movement/genetics , Cell Proliferation , Cerebral Cortex , Dyneins/genetics , Carrier Proteins , Microtubule-Associated Proteins/genetics
2.
Epilepsy Behav ; 152: 109607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277852

ABSTRACT

AIM: The current study aims to investigate the effect of Executive Functions (EFs) on Health Related Quality of Life (HRQoL) in a cohort of children with self-limited epilepsy with centrotemporal spikes (SeLECTS) and to identify possible factors that impact HRQoL specifically related to epilepsy-related variables and EFs skills. MATERIAL AND METHOD: The Pediatric Quality of Life Inventory 4.0 Generic Core Scales (PedsQL) and The Behavior Rating Inventory of Executive Function (BRIEF-2 and BRIEF-P) were completed by the parents of 129 patients with SeLECTS. Demographic variables and epilepsy-related variables were collected. RESULTS: Our sample performed in the average range across all the subscales and summary scores of the PedsQL and performed in the normal range of the BRIEF questionnaire. We observed that a lower functioning in EFs was associated with lower overall HRQoL scores. We explored the relationship between epilepsy characteristics and scores on the PedsQL. We found that the use of antiseizure medications (ASMs), longer duration of the treatment, and a higher seizure frequency were associated with a lower HRQoL. Moreover, we observed that executive dysfunction was a significant predictor of reduced HRQoL. CONCLUSION: Our results suggest the importance of the identification of patients with SeLECTS with a high level of risk for a poor HRQoL. We may now add executive dysfunction to the list of known risk factors for poor HRQoL in children with SeLECTS, along with such factors as seizure frequency, recent seizures, use of ASMs and longer duration of therapy. The early identification of children with SeLECTS at risk of a poor HRQoL could allow the activation of adequate interventions.


Subject(s)
Cognitive Dysfunction , Epilepsy , Child , Humans , Executive Function/physiology , Quality of Life , Epilepsy/drug therapy , Seizures , Surveys and Questionnaires
3.
Cereb Cortex ; 33(17): 9709-9717, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37429835

ABSTRACT

The clinical phenotype of Cyclin-Dependent Kinase-Like 5 (CDKL5) deficiency disorder (CDD) has been delineated but neuroimaging features have not been systematically analyzed. We studied brain magnetic resonance imaging (MRI) scans in a cohort of CDD patients and reviewed age at seizure onset, seizure semiology, head circumference. Thirty-five brain MRI from 22 unrelated patients were included. The median age at study entry was 13.4 years. In 14/22 patients (85.7%), MRI in the first year of life was unremarkable in all but two. In 11/22, we performed MRI after 24 months of age (range 2.5-23 years). In 8 out of 11 (72.7%), MRI showed supratentorial atrophy and in six cerebellar atrophy. Quantitative analysis detected volumetric reduction of the whole brain (-17.7%, P-value = 0.014), including both white matter (-25.7%, P-value = 0.005) and cortical gray matter (-9.1%, P-value = 0.098), with a reduction of surface area (-18.0%, P-value = 0.032), mainly involving the temporal regions, correlated with the head circumference (ρ = 0.79, P-value = 0.109). Both the qualitative structural assessment and the quantitative analysis detected brain volume reduction involving the gray and white matter. These neuroimaging findings may be related to either progressive changes due to CDD pathogenesis, or to the extreme severity of epilepsy, or both. Larger prospective studies are needed to clarify the bases for the structural changes we observed.


Subject(s)
Spasms, Infantile , Humans , Spasms, Infantile/genetics , Brain/diagnostic imaging , Brain/pathology , Seizures/pathology , Atrophy/pathology , Protein Serine-Threonine Kinases/genetics
4.
Epilepsia ; 64(7): e148-e155, 2023 07.
Article in English | MEDLINE | ID: mdl-37203213

ABSTRACT

Variable phenotypes, including developmental encephalopathy with (DEE) or without seizures and myoclonic epilepsy and ataxia due to potassium channel mutation, are caused by pathogenetic variants in KCNC1, encoding for Kv3.1 channel subunits. In vitro, channels carrying most KCNC1 pathogenic variants display loss-of-function features. Here, we describe a child affected by DEE with fever-triggered seizures, caused by a novel de novo heterozygous missense KCNC1 variant (c.1273G>A; V425M). Patch-clamp recordings in transiently transfected CHO cells revealed that, compared to wild-type, Kv3.1 V425M currents (1) were larger, with membrane potentials between -40 and +40 mV; (2) displayed a hyperpolarizing shift in activation gating; (3) failed to inactivate; and (4) had slower activation and deactivation kinetics, consistent with a mixed functional pattern with prevalent gain-of-function effects. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant Kv3.1 channels. Treatment of the proband with fluoxetine led to a rapid and prolonged clinical amelioration, with the disappearance of seizures and an improvement in balance, gross motor skills, and oculomotor coordination. These results suggest that drug repurposing based on the specific genetic defect may provide an effective personalized treatment for KCNC1-related DEEs.


Subject(s)
Epilepsies, Myoclonic , Seizures, Febrile , Cricetinae , Animals , Fluoxetine/therapeutic use , Cricetulus , Precision Medicine , Gain of Function Mutation , Seizures/genetics , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics
5.
Epilepsia ; 64(12): e222-e228, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37746765

ABSTRACT

Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.


Subject(s)
Diet, Ketogenic , Epilepsy, Generalized , Humans , Rats , Animals , Potassium Channels/genetics , Potassium Channels/metabolism , HEK293 Cells , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Epilepsy, Generalized/genetics , Cyclic Nucleotide-Gated Cation Channels
6.
Epilepsia ; 64(6): e98-e104, 2023 06.
Article in English | MEDLINE | ID: mdl-37000415

ABSTRACT

This retrospective study assessed long-term effectiveness of add-on perampanel (PER) in patients with Lennox-Gastaut syndrome (LGS). Outcomes included time to PER failure and time to seizure relapse in responders. PER failure was defined as either discontinuation of PER or initiation of another treatment. Seizure relapse in responders was defined as occurrence of a seizure in seizure-free patients and increase of at least 50% in average monthly seizure frequency for those who were responders. Eighty-seven patients were included. Treatment failure occurred in 52 (59.8%) subjects at a median time of 12 months. Treatment failure was due to lack of efficacy in 27 (52.0%) patients, lack of tolerability in 14 (27.0%), and both reasons in 11 (21.0%). A slower titration was associated with a lower risk of PER failure compared to faster titration schedules, and the occurrence of adverse events increased the risk of treatment failure. Thirty-six patients (41.4%) were responders during a median follow-up of 11 months. Seizure relapse occurred in 13 of 36 (36.1%) patients after a median time of 21 months. The overall rate of seizure responders was 23 of 87 (26.4%) at the end of follow-up. This study provides real-world evidence on the effectiveness of PER as adjunctive treatment in LGS patients.


Subject(s)
Lennox Gastaut Syndrome , Humans , Lennox Gastaut Syndrome/drug therapy , Retrospective Studies , Anticonvulsants/therapeutic use , Treatment Outcome , Seizures/drug therapy
7.
Sensors (Basel) ; 22(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35336311

ABSTRACT

Dravet syndrome (DS) is a rare and severe form of genetic epilepsy characterized by cognitive and behavioural impairments and progressive gait deterioration. The characterization of gait parameters in DS needs efficient, non-invasive quantification. The aim of the present study is to apply nonlinear indexes calculated from inertial measurements to describe the dynamics of DS gait. Twenty participants (7 M, age 9-33 years) diagnosed with DS were enrolled. Three wearable inertial measurement units (OPAL, Apdm, Portland, OR, USA; Miniwave, Cometa s.r.l., Italy) were attached to the lower back and ankles and 3D acceleration and angular velocity were acquired while participants walked back and forth along a straight path. Segmental kinematics were acquired by means of stereophotogrammetry (SMART, BTS). Community functioning data were collected using the functional independence measure (FIM). Mean velocity and step width were calculated from stereophotogrammetric data; fundamental frequency, harmonic ratio, recurrence quantification analysis, and multiscale entropy (τ = 1...6) indexes along anteroposterior (AP), mediolateral (ML), and vertical (V) axes were calculated from trunk acceleration. Results were compared to a reference age-matched control group (112 subjects, 6-25 years old). All nonlinear indexes show a disruption of the cyclic pattern of the centre of mass in the sagittal plane, quantitatively supporting the clinical observation of ataxic gait. Indexes in the ML direction were less altered, suggesting the efficacy of the compensatory strategy (widening the base of support). Nonlinear indexes correlated significantly with functional scores (i.e., FIM and speed), confirming their effectiveness in capturing clinically meaningful biomarkers of gait.


Subject(s)
Epilepsies, Myoclonic , Wearable Electronic Devices , Adolescent , Adult , Biomechanical Phenomena , Child , Gait , Humans , Walking , Young Adult
8.
Epilepsia ; 62(4): 874-887, 2021 04.
Article in English | MEDLINE | ID: mdl-33646591

ABSTRACT

Dravet syndrome (DS) is a rare severe epilepsy syndrome associated with slowed psychomotor development and behavioral disorders from the second year onward in a previously seemingly normal child. Among cognitive impairments, visuospatial, sensorimotor integration, and expressive language deficits are consistently reported. There have been independent hypotheses to deconstruct the typical cognitive development in DS (dorsal stream vulnerability, cerebellar-like pattern, sensorimotor integration deficit), but an encompassing framework is still lacking. We performed a scoping review of existing evidence to map the current understanding of DS cognitive and behavioral developmental profiles and to summarize the evidence on suggested frameworks. We searched PubMed, Scopus, PsycInfo, and MEDLINE to identify reports focusing on cognitive deficits and/or behavioral abnormalities in DS published between 1978 and March 15, 2020. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. Twenty-one reports were selected and tabulated by three independent reviewers based on predefined data extraction and eligibility forms. Eighteen reports provided assessments of global intelligence quotients with variable degrees of cognitive impairment. Eleven reports analyzed single subitems contribution to global cognitive scores: these reports showed consistently larger impairment in performance scales compared to verbal ones. Studies assessing specific cognitive functions demonstrated deterioration of early visual processing, fine and gross motor abilities, visuomotor and auditory-motor integration, spatial processing, visuo-attentive abilities, executive functions, and expressive language. Behavioral abnormalities, reported from 14 studies, highlighted autistic-like traits and attention and hyperactivity disorders, slightly improving with age. The cognitive profile in DS and some behavioral and motor abnormalities may be enclosed within a unified theoretical framework of the three main hypotheses advanced: a pervasive sensorimotor integration deficit, encompassing an occipito-parietofrontal circuit (dorsal stream) dysfunction and a coexistent cerebellar deficit.


Subject(s)
Cognition/physiology , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/psychology , Mental Status and Dementia Tests , Epilepsies, Myoclonic/physiopathology , Executive Function/physiology , Humans , Neuropsychological Tests
9.
Epilepsy Behav ; 125: 108443, 2021 12.
Article in English | MEDLINE | ID: mdl-34837842

ABSTRACT

RATIONALE: Juvenile myoclonic epilepsy (JME) and juvenile absence epilepsy (JAE) are generalized epileptic syndromes presenting in the same age range. To explore whether uneven network dysfunctions may underlie the two different phenotypes, we examined drug-naive patients with JME and JAE at the time of their earliest presentation. METHODS: Patients were recruited based on typical JME (n = 23) or JAE (n = 18) presentation and compared with 16 age-matched healthy subjects (HS). We analyzed their awake EEG signals by Partial Directed Coherence and graph indexes. RESULTS: Out-density and betweenness centrality values were different between groups. With respect to both JAE and HS, JME showed unbalanced out-density and out-strength in alpha and beta bands on central regions and reduced alpha out-strength from fronto-polar to occipital regions, correlating with photosensitivity. With respect to HS, JAE showed enhanced alpha out-density and out-strength on fronto-polar regions. In gamma band, JAE showed reduced Global/Local Efficiency and Clustering Coefficient with respect to HS, while JME showed more scattered values. CONCLUSIONS: Our data suggest that regional network changes in alpha and beta bands underlie the different presentation distinguishing JME and JAE resulting in motor vs non-motor seizures characterizing these two syndromes. Conversely, impaired gamma-activity within the network seems to be a non-local marker of defective inhibition.


Subject(s)
Epilepsy, Absence , Myoclonic Epilepsy, Juvenile , Pharmaceutical Preparations , Electroencephalography , Epilepsy, Absence/diagnosis , Humans , Myoclonic Epilepsy, Juvenile/diagnosis , Occipital Lobe , Seizures
10.
Epilepsia ; 61(11): 2405-2414, 2020 11.
Article in English | MEDLINE | ID: mdl-32945537

ABSTRACT

OBJECTIVE: Dravet syndrome (DS) is a drug-resistant, infantile onset epilepsy syndrome with multiple seizure types and developmental delay. In recently published randomized controlled trials, fenfluramine (FFA) proved to be safe and effective in DS. METHODS: DS patients were treated with FFA in the Zogenix Early Access Program at four Italian pediatric epilepsy centers. FFA was administered as add-on, twice daily at an initial dose of 0.2 mg/kg/d up to 0.7 mg/kg/d. Seizures were recorded in a diary. Adverse events and cardiac safety (with Doppler echocardiography) were investigated every 3 to 6 months. RESULTS: Fifty-two patients were enrolled, with a median age of 8.6 years (interquartile range [IQR] = 4.1-13.9). Forty-five (86.5%) patients completed the efficacy analysis. The median follow-up was 9.0 months (IQR = 3.2-9.5). At last follow-up visit, there was a 77.4% median reduction in convulsive seizures. Thirty-two patients (71.1%) had a ≥50% reduction of convulsive seizures, 24 (53.3%) had a ≥75% reduction, and five (11.1%) were seizure-free. The most common adverse event was decreased appetite (n = 7, 13.4%). No echocardiographic signs of cardiac valvulopathy or pulmonary hypertension were observed. There was no correlation between type of genetic variants and response to FFA. SIGNIFICANCE: In this real-world study, FFA provided a clinically meaningful reduction in convulsive seizure frequency in the majority of patients with DS and was well tolerated.


Subject(s)
Epilepsies, Myoclonic/drug therapy , Fenfluramine/administration & dosage , Seizures/drug therapy , Selective Serotonin Reuptake Inhibitors/administration & dosage , Adolescent , Adult , Anorexia/chemically induced , Anticonvulsants/administration & dosage , Anticonvulsants/adverse effects , Child , Child, Preschool , Epilepsies, Myoclonic/diagnostic imaging , Epilepsies, Myoclonic/physiopathology , Female , Fenfluramine/adverse effects , Follow-Up Studies , Humans , Male , Prospective Studies , Seizures/diagnostic imaging , Seizures/physiopathology , Selective Serotonin Reuptake Inhibitors/adverse effects , Treatment Outcome , Young Adult
11.
Pharmacol Res ; 160: 105200, 2020 10.
Article in English | MEDLINE | ID: mdl-32942014

ABSTRACT

De novo variants in KCNQ2 encoding for Kv7.2 voltage-dependent neuronal potassium (K+) channel subunits are associated with developmental epileptic encephalopathy (DEE). We herein describe the clinical and electroencephalographic (EEG) features of a child with early-onset DEE caused by the novel KCNQ2 p.G310S variant. In vitro experiments demonstrated that the mutation induces loss-of-function effects on the currents produced by channels incorporating mutant subunits; these effects were counteracted by the selective Kv7 opener retigabine and by gabapentin, a recently described Kv7 activator. Given these data, the patient started treatment with gabapentin, showing a rapid and sustained clinical and EEG improvement over the following months. Overall, these results suggest that gabapentin can be regarded as a precision therapy for DEEs due to KCNQ2 loss-of-function mutations.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Epilepsy/genetics , Gabapentin/therapeutic use , KCNQ2 Potassium Channel/genetics , Age of Onset , Animals , CHO Cells , Carbamates/therapeutic use , Cells, Cultured , Child , Cricetinae , Cricetulus , Electroencephalography , Female , Humans , Mutation , Phenylenediamines/therapeutic use , Precision Medicine , Rats , Treatment Outcome
12.
Epilepsia ; 60 Suppl 3: S49-S58, 2019 12.
Article in English | MEDLINE | ID: mdl-31904122

ABSTRACT

To describe the outcome of Dravet syndrome (DS) in adolescents and adults we conducted a longitudinal retrospective study of two independent cohorts of 34 adolescents (group 1) and 50 adults (group 2). In both cohorts, we collected information about genetic mutation, and semiology of seizures at onset and during disease course. At the last evaluation, we considered the following features: epilepsy (distinguishing myoclonic/complete and nonmyoclonic/incomplete phenotype), neurologic signs, intellectual disability (ID), and behavioral disorders. Moreover, in both cohorts, we performed a correlation analysis between early characteristics of the disease and the outcome of DS with regard to seizure persistence, ID, behavioral disorder, and neurologic impairment at last evaluation. Group 1 includes 22 adolescents with complete form of DS and 12 with incomplete form; group 2 includes 35 adults with complete form and 15 with incomplete form. The seizures persisted in 73.6% of adolescents and in 80% of adults, but epilepsy severity progressively decreased through age. Seizure persistence correlated with the complete phenotype and with the occurrence of reflex seizures. At last evaluation, ID was moderate or severe in 70.5% of adolescents and in 80% of adults. The most severe cognitive and motor impairment was observed in patients with persisting seizures. The severity of cognition, language, and neurologic impairment at last evaluation correlated statistically with the complete phenotype. The study confirms that the global outcome of DS is poor in most cases, albeit epilepsy severity decreases throughout adulthood. The improvement of epilepsy throughout ages is not associated with improvement in intellectual abilities and motor skills; this confirms that the unfavorable outcome is not a pure consequence of epilepsy.


Subject(s)
Age Factors , Epilepsies, Myoclonic/therapy , Epilepsy/therapy , Time , Adolescent , Adult , Epilepsies, Myoclonic/genetics , Epilepsy/complications , Female , Humans , Intellectual Disability/complications , Intellectual Disability/therapy , Male , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Seizures/complications , Seizures/therapy , Young Adult
13.
Acta Neurol Scand ; 140(3): 184-193, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31102535

ABSTRACT

OBJECTIVES: To determine the prevalence of epilepsy in children with early-onset mitochondrial diseases (MDs) and to evaluate the epileptic phenotypes and associated features. MATERIALS AND METHODS: Children affected by MD with onset during the first year of life were enrolled. Patients were classified according to their mitochondrial phenotype, and all findings in patients with epilepsy versus patients without were compared. The epileptic features were analyzed. RESULTS: The series includes 129 patients (70 females) with median age at disease onset of 3 months. The median time of follow-up was 5 years. Non-syndromic mitochondrial encephalopathy and pyruvate dehydrogenase complex deficiency were the main mitochondrial diseases associated with epilepsy (P < 0.05). Seizures occurred in 48%, and the presence of epilepsy was significantly associated with earlier age at disease onset, presence of perinatal manifestations, and early detection of developmental delay and regression (P < 0.001). Epileptic encephalopathy (EE) with spasms and EE with prominent focal seizures were the most detected epileptic syndromes (37% and 27.4%). Several seizure types were recorded in 53.2%, with the unusual association of generalized and focal epileptic pattern. Disabling epilepsy was detected in 63% and was associated with early seizure onset, presence of several seizure types, epileptic syndrome featuring EE, and the recurrence of episodes of status epilepticus and epilepsia partialis continua (P < 0.05). CONCLUSIONS: Epilepsy in children with early-onset MD may be a presenting or a prominent symptom in a multisystemic clinical presentation. Epilepsy-related factors could determine a worst seizure outcome, leading to a more severe burned of the disease.


Subject(s)
Epilepsy/epidemiology , Mitochondrial Diseases/epidemiology , Adolescent , Child , Child, Preschool , Epilepsy/etiology , Epilepsy/pathology , Female , Humans , Infant , Male , Mitochondrial Diseases/complications , Mitochondrial Diseases/pathology , Phenotype
14.
Brain ; 141(11): 3160-3178, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30351409

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability.


Subject(s)
Epilepsy, Generalized/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Mutation/genetics , Potassium Channels/genetics , Spasms, Infantile/genetics , Adolescent , Adult , Aged , Animals , CHO Cells , Child , Child, Preschool , Cricetulus , Electric Stimulation , Female , Genetic Association Studies , Humans , Infant , Male , Membrane Potentials/genetics , Middle Aged , Models, Molecular , Mutagenesis, Site-Directed/methods , Young Adult
15.
Epilepsy Behav ; 98(Pt A): 273-278, 2019 09.
Article in English | MEDLINE | ID: mdl-31419648

ABSTRACT

OBJECTIVES: The objective of this study was to investigate several clinical electroencephalogram (EEG) findings possibly predicting the early response to antiepileptic drugs (AEDs) and the late outcome in children with clinical EEG features fitting the syndromic diagnosis of childhood absence epilepsy (CAE). METHODS: In 117 untreated patients with typical absences, we analyzed clinical EEG features, and resting EEG activity using partial directed coherence to calculate out- and inflow of cortical oscillations in different regions of interest. RESULTS: Absences began before 4 years in 12.0%, at 4-9.5 years in 71.8%, and at 10-13 years in 16.2% of the cases. Valproate was started in 91 patients and ethosuximide in 27. With one of AEDs, 77.8% reached seizure control, while the remaining patients needed to switch to the alternative AED. Only 5.9% patients remained drug-resistant. Absences with simple automatisms were the only feature associated with a lack of response to the first AED. Connectivity analysis of resting EEGs showed increased frontal outflow in patients compared with controls, which was significantly greater in the nonresponders to the first AED than in responders. Among the 91 patients followed for 61.2 ±â€¯31.7 months, 14.2% relapsed after a seizure-free period, without differences between the responders to the first or second AED. CONCLUSIONS: The assessment of electroclinical features provided only minimal prognostic indices. The enhanced outflow of frontal oscillations suggests a circuitry dysfunction significantly greater in the nonresponder to the early treatment. Seizure relapses were rare and comparable in patients who reached seizure freedom with first or second AED, indicating that the resistance to one AED does not influence the outcome.


Subject(s)
Anticonvulsants/therapeutic use , Electroencephalography/trends , Epilepsy, Absence/drug therapy , Epilepsy, Absence/physiopathology , Adolescent , Child , Child, Preschool , Electroencephalography/methods , Epilepsy, Absence/diagnosis , Ethosuximide/therapeutic use , Female , Follow-Up Studies , Humans , Male , Recurrence , Treatment Outcome , Valproic Acid/therapeutic use
16.
Dev Med Child Neurol ; 61(9): 1101-1107, 2019 09.
Article in English | MEDLINE | ID: mdl-31175679

ABSTRACT

AIM: To identify factors that may predict and affect the risk of relapse in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. METHOD: This was a retrospective study of an Italian cohort of patients with paediatric (≤18y) onset anti-NMDAR encephalitis. RESULTS: Of the 62 children included (39 females; median age at onset 9y 10mo, range 1y 2mo-18y; onset between 2005 and 2018), 21 per cent relapsed (median two total events per relapsing patient, range 2-4). Time to first relapse was median 31.5 months (range 7-89mo). Severity at first relapse was lower than onset (median modified Rankin Scale [mRS] 3, range 2-4, vs median mRS 5, range 3-5; admission to intensive care unit: 0/10 vs 3/10). At the survival analysis, the risk of relapsing was significantly lower in patients who received three or more different immune therapies at first disease event (hazard ratio 0.208, 95% confidence interval 0.046-0.941; p=0.042). Neurological outcome at follow-up did not differ significantly between patients with relapsing and monophasic disease (mRS 0-1 in 39/49 vs 12/13; p=0.431), although follow-up duration was significantly longer in relapsing (median 84mo, range 14-137mo) than in monophasic patients (median 32mo, range 4-108mo; p=0.002). INTERPRETATION: Relapses may occur in about one-fifth of children with anti-NMDAR encephalitis, are generally milder than at onset, and may span over a long period, although they do not seem to be associated with severity in the acute phase or with outcome at follow-up. Aggressive immune therapy at onset may reduce risk of relapse. WHAT THIS PAPER ADDS: Relapses of anti-N-methyl-D-aspartate receptor encephalitis may span over a long period. Relapses were not associated with severity in the acute phase or outcome at follow-up. Aggressive immune therapy at onset appears to decrease risk of relapse.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Italy , Male , Recurrence , Retrospective Studies , Risk Factors
17.
Neurobiol Dis ; 118: 55-63, 2018 10.
Article in English | MEDLINE | ID: mdl-29936235

ABSTRACT

The causes of genetic epilepsies are unknown in the majority of patients. HCN ion channels have a widespread expression in neurons and increasing evidence demonstrates their functional involvement in human epilepsies. Among the four known isoforms, HCN1 is the most expressed in the neocortex and hippocampus and de novo HCN1 point mutations have been recently associated with early infantile epileptic encephalopathy. So far, HCN1 mutations have not been reported in patients with idiopathic epilepsy. Using a Next Generation Sequencing approach, we identified the de novo heterozygous p.Leu157Val (c.469C > G) novel mutation in HCN1 in an adult male patient affected by genetic generalized epilepsy (GGE), with normal cognitive development. Electrophysiological analysis in heterologous expression model (CHO cells) and in neurons revealed that L157V is a loss-of-function, dominant negative mutation causing reduced HCN1 contribution to net inward current and responsible for an increased neuronal firing rate and excitability, potentially predisposing to epilepsy. These data represent the first evidence that autosomal dominant missense mutations of HCN1 can also be involved in GGE, without the characteristics of epileptic encephalopathy reported previously. It will be important to include HCN1 screening in patients with GGE, in order to extend the knowledge of the genetic causes of idiopathic epilepsies, thus paving the way for the identification of innovative therapeutic strategies.


Subject(s)
Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Mutation/genetics , Neurons/physiology , Potassium Channels/genetics , Action Potentials/physiology , Amino Acid Sequence , Animals , Animals, Newborn , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Epilepsy, Generalized/physiopathology , Female , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Male , Pedigree , Potassium Channels/chemistry , Protein Structure, Secondary , Rats , Young Adult
18.
Ann Neurol ; 81(5): 677-689, 2017 May.
Article in English | MEDLINE | ID: mdl-28380698

ABSTRACT

OBJECTIVE: To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. METHODS: We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV 3.1 channels. RESULTS: Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG-electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type KV 3.1, increasing channel availability. INTERPRETATION: MEAK has a relatively homogeneous presentation, resembling Unverricht-Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type KV 3.1 subunit-containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics. Ann Neurol 2017;81:677-689.


Subject(s)
Ataxia , Cognitive Dysfunction/etiology , Epilepsies, Myoclonic , Hot Temperature , Shaw Potassium Channels/metabolism , Adolescent , Adult , Age of Onset , Ataxia/complications , Ataxia/diagnostic imaging , Ataxia/genetics , Ataxia/physiopathology , Electroencephalography , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/diagnostic imaging , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/physiopathology , Female , HEK293 Cells , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Pedigree , Shaw Potassium Channels/genetics , Syndrome , Young Adult
19.
Epilepsia ; 59(12): 2260-2271, 2018 12.
Article in English | MEDLINE | ID: mdl-30451291

ABSTRACT

OBJECTIVE: PCDH19-related epilepsy is an epileptic syndrome with infantile onset, characterized by clustered and fever-induced seizures, often associated with intellectual disability (ID) and autistic features. The aim of this study was to analyze a large cohort of patients with PCDH19-related epilepsy and better define the epileptic phenotype, genotype-phenotype correlations, and related outcome-predicting factors. METHODS: We retrospectively collected genetic, clinical, and electroencephalogram (EEG) data of 61 patients with PCDH19-related epilepsy followed at 15 epilepsy centers. All consecutively performed EEGs were analyzed, totaling 551. We considered as outcome measures the development of ID, autistic spectrum disorder (ASD), and seizure persistence. The analyzed variables were the following: gender, age at onset, age at study, genetic variant, fever sensitivity, seizure type, cluster occurrence, status epilepticus, EEG abnormalities, and cognitive and behavioral disorders. Receiver operating characteristic curve analysis was performed to evaluate the age at which seizures might decrease in frequency. RESULTS: At last follow-up (median = 12 years, range = 1.9-42.1 years), 48 patients (78.7%) had annual seizures/clusters, 13 patients (21.3%) had monthly to weekly seizures, and 12 patients (19.7%) were seizure-free for ≥2 years. Receiver operating characteristic analysis showed a significant decrease of seizure frequency after the age of 10.5 years (sensitivity = 81.0%, specificity = 70.0%). Thirty-six patients (59.0%) had ID and behavioral disturbances. ASD was present in 31 patients. An earlier age at epilepsy onset emerged as the only predictive factor for ID (P = 0.047) and ASD (P = 0.014). Conversely, age at onset was not a predictive factor for seizure outcome (P = 0.124). SIGNIFICANCE: We found that earlier age at epilepsy onset is related to a significant risk for ID and ASD. Furthermore, long-term follow-up showed that after the age of 10 years, seizures decrease in frequency and cognitive and behavioral disturbances remain the primary clinical problems.


Subject(s)
Cadherins/genetics , Epileptic Syndromes/genetics , Epileptic Syndromes/therapy , Adolescent , Adult , Age of Onset , Autistic Disorder/complications , Autistic Disorder/psychology , Child , Child, Preschool , Cohort Studies , Electroencephalography , Female , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/psychology , Male , Phenotype , Protocadherins , Retrospective Studies , Seizures , Treatment Outcome , Young Adult
20.
Acta Neurol Scand ; 138(6): 523-530, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30109707

ABSTRACT

OBJECTIVIES: Monosomy 1p36 syndrome is a recognized syndrome with multiple congenital anomalies; medical problems of this syndrome include developmental delay, facial dysmorphisms, hearing loss, short stature, brain anomalies, congenital heart defects. Epilepsy can be another feature but there are few data about the types of seizures and long term prognosis. The aim of this work was to analyse the electroclinical phenotype and the long-term outcome in patients with monosomy 1p36 syndrome and epilepsy. MATERIALS AND METHODS: Data of 22 patients with monosomy 1p36 syndrome and epilepsy were reconstructed by reviewing medical records. For each patient we analysed age at time of diagnosis, first signs of the syndrome, age at seizure onset, seizure type and its frequency, EEG and neuroimaging findings, the response to antiepileptic drugs treatment and clinical outcome up to the last follow-up assessment. RESULTS: Infantile Spasm (IS) represents the most frequent type at epilepsy onset, which occurs in 36.4% of children, and a half of these were associated with hypsarrhythmic electroencephalogram. All patients with IS had persistence of seizures, unlike other patients with different seizures onset. Children with abnormal brain neuroimaging have a greater chance to develop pharmacoresistant epilepsy. CONCLUSION: This syndrome represents a significant cause of IS: these patients, who develop IS, can suffer from pharmacoresistent epilepsy, that is more frequent in children with brain abnormalities.


Subject(s)
Chromosome Disorders/complications , Chromosome Disorders/physiopathology , Epilepsy/genetics , Epilepsy/physiopathology , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 1 , Electroencephalography , Female , Humans , Infant , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL