Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31256876

ABSTRACT

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Subject(s)
Craniofacial Abnormalities/etiology , Glycosylphosphatidylinositols/biosynthesis , Glycosylphosphatidylinositols/deficiency , Hand Deformities, Congenital/etiology , Hearing Loss, Sensorineural/etiology , Intellectual Disability/etiology , Mannosyltransferases/genetics , Metabolic Diseases/etiology , Mutation , Nails, Malformed/etiology , Peripheral Nervous System Diseases/etiology , Seizures/pathology , Adult , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Female , Glycosylphosphatidylinositols/genetics , Hand Deformities, Congenital/pathology , Hearing Loss, Sensorineural/pathology , Humans , Infant , Infant, Newborn , Intellectual Disability/pathology , Male , Metabolic Diseases/pathology , Nails, Malformed/pathology , Pedigree , Peripheral Nervous System Diseases/pathology , Seizures/genetics , Severity of Illness Index , Young Adult
2.
Epilepsia ; 60(9): 1881-1894, 2019 09.
Article in English | MEDLINE | ID: mdl-31468518

ABSTRACT

OBJECTIVE: Developmental epileptic encephalopathies (DEEs) are genetically heterogeneous severe childhood-onset epilepsies with developmental delay or cognitive deficits. In this study, we explored the pathogenic mechanisms of DEE-associated de novo mutations in the CACNA1A gene. METHODS: We studied the functional impact of four de novo DEE-associated CACNA1A mutations, including the previously described p.A713T variant and three novel variants (p.V1396M, p.G230V, and p.I1357S). Mutant cDNAs were expressed in HEK293 cells, and whole-cell voltage-clamp recordings were conducted to test the impacts on CaV 2.1 channel function. Channel localization and structure were assessed with immunofluorescence microscopy and three-dimensional (3D) modeling. RESULTS: We find that the G230V and I1357S mutations result in loss-of-function effects with reduced whole-cell current densities and decreased channel expression at the cell membrane. By contrast, the A713T and V1396M variants resulted in gain-of-function effects with increased whole-cell currents and facilitated current activation (hyperpolarized shift). The A713T variant also resulted in slower current decay. 3D modeling predicts conformational changes favoring channel opening for A713T and V1396M. SIGNIFICANCE: Our findings suggest that both gain-of-function and loss-of-function CACNA1A mutations are associated with similarly severe DEEs and that functional validation is required to clarify the underlying molecular mechanisms and to guide therapies.


Subject(s)
Brain Diseases/genetics , Calcium Channels/genetics , Gain of Function Mutation , Lennox Gastaut Syndrome/genetics , Loss of Function Mutation , Spasms, Infantile/genetics , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Mice , Patch-Clamp Techniques , Phenotype
3.
Hum Mutat ; 38(7): 816-826, 2017 07.
Article in English | MEDLINE | ID: mdl-28370826

ABSTRACT

Juvenile myoclonic epilepsy (JME) is a common form of epilepsy with a substantial genetic basis to its etiology. While earlier studies have identified EFHC1 as a causative gene for JME, subsequent studies have suggested that ethnicity may play a role in determining expression of the JME phenotype among individuals carrying EFHC1 mutations. Here, we report on our studies on EFHC1 in JME patients from India. We examined the complete structure of the EFHC1 transcript from 480 JME patients and 700 control chromosomes by direct sequencing. Functional correlates of mutations were studied by immunolocalization experiments in cultured mammalian cells and protein homology modeling by in silico methods. Thirteen mutations, of which 11 were previously not known, were identified in 28 JME patients. These mutations accounted for about 6% of the patients examined. Functional studies suggest that these EFHC1 mutations result in microtubule-related abnormalities during cell division. In silico analysis for a subset of mutations suggests that they may affect EFHC1 protein domains, compromising its ability to interact with other proteins. Our observations strengthen the evidence supporting a role for EFHC1 in JME in a population ethnically and geographically distinct from the one in which the gene was initially identified, and broaden the extent of allelic heterogeneity in the gene.


Subject(s)
Calcium-Binding Proteins/genetics , Mutation , Myoclonic Epilepsy, Juvenile/genetics , Adolescent , Adult , Case-Control Studies , Child , Chromosomes/ultrastructure , Computational Biology , DNA Mutational Analysis , Female , HEK293 Cells , Humans , India , Male , Protein Domains , Young Adult
4.
Brain ; 141(11): 3084-3088, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30364981
SELECTION OF CITATIONS
SEARCH DETAIL