Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 595(7868): 596-599, 2021 07.
Article in English | MEDLINE | ID: mdl-34234347

ABSTRACT

Biomolecular condensates have emerged as an important subcellular organizing principle1. Replication of many viruses, including human respiratory syncytial virus (RSV), occurs in virus-induced compartments called inclusion bodies (IBs) or viroplasm2,3. IBs of negative-strand RNA viruses were recently shown to be biomolecular condensates that form through phase separation4,5. Here we report that the steroidal alkaloid cyclopamine and its chemical analogue A3E inhibit RSV replication by disorganizing and hardening IB condensates. The actions of cyclopamine and A3E were blocked by a point mutation in the RSV transcription factor M2-1. IB disorganization occurred within minutes, which suggests that these molecules directly act on the liquid properties of the IBs. A3E and cyclopamine inhibit RSV in the lungs of infected mice and are condensate-targeting drug-like small molecules that have in vivo activity. Our data show that condensate-hardening drugs may enable the pharmacological modulation of not only many previously undruggable targets in viral replication but also transcription factors at cancer-driving super-enhancers6.


Subject(s)
Biomolecular Condensates/virology , Respiratory Syncytial Virus, Human/drug effects , Veratrum Alkaloids/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Female , Humans , Inclusion Bodies , Lung/virology , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus, Human/physiology , Transcription Factors , Viral Proteins
2.
Immunity ; 46(2): 301-314, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228284

ABSTRACT

Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in infants and is characterized by pulmonary infiltration of B cells in fatal cases. We analyzed the B cell compartment in human newborns and identified a population of neonatal regulatory B lymphocytes (nBreg cells) that produced interleukin 10 (IL-10) in response to RSV infection. The polyreactive B cell receptor of nBreg cells interacted with RSV protein F and induced upregulation of chemokine receptor CX3CR1. CX3CR1 interacted with RSV glycoprotein G, leading to nBreg cell infection and IL-10 production that dampened T helper 1 (Th1) cytokine production. In the respiratory tract of neonates with severe RSV-induced acute bronchiolitis, RSV-infected nBreg cell frequencies correlated with increased viral load and decreased blood memory Th1 cell frequencies. Thus, the frequency of nBreg cells is predictive of the severity of acute bronchiolitis disease and nBreg cell activity may constitute an early-life host response that favors microbial pathogenesis.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Bronchiolitis, Viral/immunology , Receptors, Chemokine/immunology , Respiratory Syncytial Virus Infections/immunology , B-Lymphocytes, Regulatory/virology , Bronchiolitis, Viral/pathology , CD4-Positive T-Lymphocytes/immunology , CX3C Chemokine Receptor 1 , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Gene Expression Profiling , Humans , Infant, Newborn , Lymphocyte Activation/immunology , Oligonucleotide Array Sequence Analysis , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Viruses , Transcriptome
3.
PLoS Pathog ; 18(7): e1010619, 2022 07.
Article in English | MEDLINE | ID: mdl-35797399

ABSTRACT

Respiratory syncytial virus (RSV) is the primary cause of severe respiratory infection in infants worldwide. Replication of RSV genomic RNA occurs in cytoplasmic inclusions generating viral ribonucleoprotein complexes (vRNPs). vRNPs then reach assembly and budding sites at the plasma membrane. However, mechanisms ensuring vRNPs transportation are unknown. We generated a recombinant RSV harboring fluorescent RNPs allowing us to visualize moving vRNPs in living infected cells and developed an automated imaging pipeline to characterize the movements of vRNPs at a high throughput. Automatic tracking of vRNPs revealed that around 10% of the RNPs exhibit fast and directed motion compatible with transport along the microtubules. Visualization of vRNPs moving along labeled microtubules and restriction of their movements by microtubule depolymerization further support microtubules involvement in vRNPs trafficking. Approximately 30% of vRNPs colocalize with Rab11a protein, a marker of the endosome recycling (ER) pathway and we observed vRNPs and Rab11-labeled vesicles moving together. Transient inhibition of Rab11a expression significantly reduces vRNPs movements demonstrating Rab11 involvement in RNPs trafficking. Finally, Rab11a is specifically immunoprecipitated with vRNPs in infected cells suggesting an interaction between Rab11 and the vRNPs. Altogether, our results strongly suggest that RSV RNPs move on microtubules by hijacking the ER pathway.


Subject(s)
Respiratory Syncytial Virus, Human , Ribonucleoproteins , rab GTP-Binding Proteins , Endosomes/metabolism , Humans , Microtubules/metabolism , Protein Transport/physiology , Respiratory Syncytial Virus, Human/metabolism , Ribonucleoproteins/metabolism , Viral Proteins/metabolism , rab GTP-Binding Proteins/metabolism
4.
Biol Cell ; 115(1): e2200059, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36192136

ABSTRACT

Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle. For these viruses, the genome replication and transcription activities most-often segregate in membrane-less environments called inclusion bodies (IBs) or viral factories. These "organelles" usually locate far from the cell surface from where new virions are released, and -ssRNA viruses do not encode for transport factors. The efficient trafficking of the genome progeny toward the cell surface is most often ensured by mechanisms co-opting the cellular machineries. In this review, for each -ssRNA viral family, we cover the methods employed to characterize these host-virus interactions, the strategies used by the viruses to promote the virus genome transport, and the current gaps in the literature. Finally, we highlight how Rab11 has emerged as a target of choice for the intracellular transport of -ssRNA virus genomes.


Subject(s)
RNA Viruses , Ribonucleoproteins , Humans , RNA, Viral/genetics , RNA Viruses/genetics , Organelles
5.
PLoS Pathog ; 17(7): e1009789, 2021 07.
Article in English | MEDLINE | ID: mdl-34320038

ABSTRACT

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.


Subject(s)
Acute Lung Injury/immunology , Acute Lung Injury/virology , Lung/immunology , Mesenchymal Stem Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Animals , Humans , Lung/cytology , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/immunology , Sheep
6.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762166

ABSTRACT

Respiratory syncytial virus (RSV) RNA synthesis takes place in cytoplasmic viral factories also called inclusion bodies (IBs), which are membrane-less organelles concentrating the viral RNA polymerase complex. The assembly of IBs is driven by liquid-liquid phase separation promoted by interactions between the viral nucleoprotein N and the phosphoprotein P. We recently demonstrated that cyclopamine (CPM) inhibits RSV multiplication by disorganizing and hardening IBs. Although a single mutation in the viral transcription factor M2-1 induced resistance to CPM, the mechanism of action of CPM still remains to be characterized. Here, using FRAP experiments on reconstituted pseudo-IBs both in cellula and in vitro, we first demonstrated that CPM activity depends on the presence of M2-1 together with N and P. We showed that CPM impairs the competition between P and RNA binding to M2-1. As mutations on both P and M2-1 induced resistance against CPM activity, we suggest that CPM may affect the dynamics of the M2-1-P interaction, thereby affecting the relative mobility of the proteins contained in RSV IBs. Overall, our results reveal that stabilizing viral protein-protein interactions is an attractive new antiviral approach. They pave the way for the rational chemical optimization of new specific anti-RSV molecules.


Subject(s)
RNA , Respiratory Syncytial Virus, Human , Veratrum Alkaloids , Inclusion Bodies
7.
J Infect Dis ; 226(12): 2079-2088, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35861054

ABSTRACT

Infections caused by human respiratory syncytial virus (RSV) are associated with substantial rates of morbidity and mortality. Treatment options are limited, and there is urgent need for the development of efficient antivirals. Pattern recognition receptors such as the cytoplasmic helicase retinoic acid-inducible gene (RIG) I can be activated by viral nucleic acids, leading to activation of interferon-stimulated genes and generation of an "antiviral state." In the current study, we activated RIG-I with synthetic RNA agonists (3pRNA) to induce resistance to RSV infection in vitro and in vivo. In vitro, pretreatment of human, mouse, and ferret airway cell lines with RIG-I agonist before RSV exposure inhibited virus infection and replication. Moreover, a single intravenous injection of 3pRNA 1 day before RSV infection resulted in potent inhibition of virus replication in the lungs of mice and ferrets, but not in nasal tissues. These studies provide evidence that RIG-I agonists represent a promising antiviral drug for RSV prophylaxis.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Animals , Humans , Respiratory Syncytial Virus, Human/physiology , Ferrets , Lung , Virus Replication , Antiviral Agents/pharmacology , Tretinoin
8.
Antimicrob Agents Chemother ; 66(12): e0103222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36346232

ABSTRACT

Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline. We used a two-step screen that interrogates compound efficacy after primary infection and a consecutive virus passaging. We resynthesized selected hit molecules and profiled their activities with hRSV lentiviral pseudotype cell entry, replicon, and time-of-addition assays. The breadth of antiviral activity was tested against recent RSV clinical strains and human coronavirus (hCoV-229E), and in pseudotype-based entry assays with non-RSV viruses. Screening 6,048 molecules, we identified 23 primary candidates, of which 13 preferentially scored in the first and 10 in the second rounds of infection, respectively. Two of these molecules inhibited hRSV cell entry and selected for F protein resistance within the fusion peptide. One molecule inhibited transcription/replication in hRSV replicon assays, did not select for phenotypic hRSV resistance and was active against non-hRSV viruses, including hCoV-229E. One compound, identified in the second round of infection, did not measurably inhibit hRSV cell entry or replication/transcription. It selected for two coding mutations in the G protein and was highly active in differentiated BCi-NS1.1 lung cells. In conclusion, we identified four new hRSV inhibitor candidates with different modes of action. Our findings build an interesting platform for medicinal chemistry-guided derivatization approaches followed by deeper phenotypical characterization in vitro and in vivo with the aim of developing highly potent hRSV drugs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/genetics , Antiviral Agents/therapeutic use , Lung
9.
PLoS Biol ; 17(2): e3000164, 2019 02.
Article in English | MEDLINE | ID: mdl-30789898

ABSTRACT

Throughout the last several decades, vaccination has been key to prevent and eradicate infectious diseases. However, many pathogens (e.g., respiratory syncytial virus [RSV], influenza, dengue, and others) have resisted vaccine development efforts, largely because of the failure to induce potent antibody responses targeting conserved epitopes. Deep profiling of human B cells often reveals potent neutralizing antibodies that emerge from natural infection, but these specificities are generally subdominant (i.e., are present in low titers). A major challenge for next-generation vaccines is to overcome established immunodominance hierarchies and focus antibody responses on crucial neutralization epitopes. Here, we show that a computationally designed epitope-focused immunogen presenting a single RSV neutralization epitope elicits superior epitope-specific responses compared to the viral fusion protein. In addition, the epitope-focused immunogen efficiently boosts antibodies targeting the palivizumab epitope, resulting in enhanced neutralization. Overall, we show that epitope-focused immunogens can boost subdominant neutralizing antibody responses in vivo and reshape established antibody hierarchies.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Epitopes/chemistry , Receptors, Antigen, B-Cell/immunology , Recombinant Fusion Proteins/chemistry , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/chemistry , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Cloning, Molecular , Computer-Aided Design , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immunization/methods , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Palivizumab/chemistry , Palivizumab/immunology , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/biosynthesis , Respiratory Syncytial Virus Vaccines/genetics , Structural Homology, Protein , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
10.
Proc Natl Acad Sci U S A ; 116(22): 10968-10977, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31076555

ABSTRACT

New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.


Subject(s)
Antiviral Agents/pharmacology , Chromosomal Proteins, Non-Histone/metabolism , Cytokines/metabolism , Orthomyxoviridae/drug effects , RNA Splicing Factors/metabolism , A549 Cells , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Cytokines/chemistry , Cytokines/genetics , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Molecular Docking Simulation , Orthomyxoviridae/pathogenicity , Protein Binding/drug effects , Protein Stability/drug effects , RNA Splicing , RNA Splicing Factors/chemistry , RNA Splicing Factors/genetics , Spliceosomes/drug effects
11.
Eur J Clin Microbiol Infect Dis ; 40(10): 2235-2241, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33782783

ABSTRACT

We report evaluation of 30 assays' (17 rapid tests (RDTs) and 13 automated/manual ELISA/CLIA assay (IAs)) clinical performances with 2594 sera collected from symptomatic patients with positive SARS-CoV-2 rRT-PCR on a respiratory sample, and 1996 pre-epidemic serum samples expected to be negative. Only 4 RDT and 3 IAs fitted both specificity (> 98%) and sensitivity (> 90%) criteria according to French recommendations. Serology may offer valuable information during COVID-19 pandemic, but inconsistent performances observed among the 30 commercial assays evaluated, which underlines the importance of independent evaluation before clinical implementation.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Immunoassay/methods , SARS-CoV-2/immunology , COVID-19/virology , Humans , Immunoassay/economics , Immunoglobulin M/blood , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
12.
BMC Geriatr ; 21(1): 120, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579210

ABSTRACT

BACKGROUND: Acquired infections in hospitalized elderly people are a growing concern. In long-term care facilities with multiple staff and visitor contacts, virus outbreaks are a common challenge for infection prevention teams. Although several studies have reported nosocomial RSV outbreaks in long term care facilities, molecular epidemiology data are scarce. METHODS: RSV RNA was detected in respiratory samples from 19 patients in a long-term care hospital for elderly in Paris in March 2019 over a 3 weeks period. Genotyping was performed using nucleotide sequencing. Sociodemographic and clinical characteristics of cases part of a unique cluster, were retrospectively reviewed. RESULTS: Molecular investigation of theses RSV cases, revealed a unique cluster of 12 nosocomial cases in 2 adjacent wards. Mean age of these outbreak's cases was 89. All patients had underlying medical conditions. Seven exhibited lower respiratory symptoms and three experienced decompensation of underlying chronic heart condition. Two patients died. CONCLUSIONS: This case report highlights the importance of RSV in causing substantial disease in elderly in case of nosocomial outbreak and the contributions of molecular epidemiology in investigation and management of such outbreak.


Subject(s)
Cross Infection , Respiratory Syncytial Virus Infections , Aged , Cross Infection/diagnosis , Cross Infection/epidemiology , Disease Outbreaks , Hospitals , Humans , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Retrospective Studies
13.
J Neurochem ; 155(2): 137-153, 2020 09.
Article in English | MEDLINE | ID: mdl-31811775

ABSTRACT

The olfactory mucosa, where the first step of odor detection occurs, is a privileged pathway for environmental toxicants and pathogens toward the central nervous system. Indeed, some pathogens can infect olfactory sensory neurons including their axons projecting to the olfactory bulb allowing them to bypass the blood-brain barrier and reach the central nervous system (CNS) through the so-called olfactory pathway. The respiratory syncytial virus (RSV) is a major respiratory tract pathogen but there is growing evidence that RSV may lead to CNS impairments. However, the mechanisms involved in RSV entering into the CNS have been poorly described. In this study, we wanted to explore the capacity of RSV to reach the CNS via the olfactory pathway and to better characterize RSV cellular tropism in the nasal cavity. We first explored the distribution of RSV infectious sites in the nasal cavity by in vivo bioluminescence imaging and a tissue clearing protocol combined with deep-tissue imaging and 3D image analyses. This whole tissue characterization was confirmed with immunohistochemistry and molecular biology approaches. Together, our results provide a novel 3D atlas of mouse nasal cavity anatomy and show that RSV can infect olfactory sensory neurons giving access to the central nervous system by entering the olfactory bulb. Cover Image for this issue: doi: 10.1111/jnc.14765.


Subject(s)
Olfactory Mucosa/innervation , Olfactory Mucosa/virology , Olfactory Receptor Neurons/virology , Respiratory Syncytial Viruses , Animals , Central Nervous System/diagnostic imaging , Central Nervous System/virology , Central Nervous System Diseases/diagnostic imaging , Central Nervous System Diseases/virology , Female , Head/anatomy & histology , Imaging, Three-Dimensional , Mice , Mice, Inbred BALB C , Nasal Mucosa/virology , Olfactory Bulb/virology , Olfactory Mucosa/diagnostic imaging , RNA, Viral/isolation & purification , Tropism , Virus Replication
14.
J Gen Virol ; 101(1): 21-32, 2020 01.
Article in English | MEDLINE | ID: mdl-31702536

ABSTRACT

Peptide-based inhibitors hold promising potential in the development of antiviral therapy. Here, we investigated the antiviral potential of fragmented viral proteins derived from ribonucleoprotein (RNP) components of the human respiratory syncytial virus (HRSV). Based on a mimicking approach that targets the functional domains of viral proteins, we designed various fragments of nucleoprotein (N), matrix protein M2-1 and phosphoprotein (P) and tested the antiviral activity in an RSV mini-genome system. We found that the fragment comprising residues 130-180 and 212-241 in the C-terminal region of P (81 amino acid length), denoted as P Fr, significantly inhibited the polymerase activity through competitive binding to the full-length P. Further deletion analysis of P Fr suggested that three functional domains in P Fr (oligomerization, L-binding and nucleocapsid binding) are required for maximum inhibitory activity. More importantly, a purified recombinant P Fr displayed significant antiviral activity at low nanomolar range in RSV-infected HEp-2 cells. These results highlight P as an important target for the development of antiviral compounds against RSV and other paramyxoviruses.


Subject(s)
Antiviral Agents/metabolism , Respiratory Syncytial Virus, Human/metabolism , Ribonucleoproteins/metabolism , Ribonucleoproteins/pharmacology , Viral Proteins/metabolism , Viral Proteins/pharmacology , Virus Diseases/drug therapy , Amino Acid Sequence , Animals , Cell Line , Cricetinae , Humans , Nucleocapsid/metabolism , Nucleoproteins/metabolism , Phosphoproteins/metabolism , Protein Transport/physiology
15.
PLoS Pathog ; 14(3): e1006920, 2018 03.
Article in English | MEDLINE | ID: mdl-29489893

ABSTRACT

Respiratory syncytial virus (RSV) RNA synthesis occurs in cytoplasmic inclusion bodies (IBs) in which all the components of the viral RNA polymerase are concentrated. In this work, we show that RSV P protein recruits the essential RSV transcription factor M2-1 to IBs independently of the phosphorylation state of M2-1. We also show that M2-1 dephosphorylation is achieved by a complex formed between P and the cellular phosphatase PP1. We identified the PP1 binding site of P, which is an RVxF-like motif located nearby and upstream of the M2-1 binding region. NMR confirmed both P-M2-1 and P-PP1 interaction regions in P. When the P-PP1 interaction was disrupted, M2-1 remained phosphorylated and viral transcription was impaired, showing that M2-1 dephosphorylation is required, in a cyclic manner, for efficient viral transcription. IBs contain substructures called inclusion bodies associated granules (IBAGs), where M2-1 and neo-synthesized viral mRNAs concentrate. Disruption of the P-PP1 interaction was correlated with M2-1 exclusion from IBAGs, indicating that only dephosphorylated M2-1 is competent for viral mRNA binding and hence for a previously proposed post-transcriptional function.


Subject(s)
Cytoplasmic Granules/metabolism , Inclusion Bodies/metabolism , Protein Phosphatase 1/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Transcription, Genetic , Viral Proteins/metabolism , Amino Acid Sequence , Binding Sites , DNA-Directed RNA Polymerases/metabolism , Humans , Phosphorylation , Proteolysis , RNA, Viral , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/pathogenicity , Sequence Homology
16.
Nat Mater ; 17(2): 195-203, 2018 02.
Article in English | MEDLINE | ID: mdl-29251725

ABSTRACT

Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism.  These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.


Subject(s)
Antiviral Agents , Biomimetic Materials , Herpes Simplex/drug therapy , Herpesvirus 2, Human/metabolism , Nanoparticles , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Heparan Sulfate Proteoglycans/chemistry , Heparan Sulfate Proteoglycans/pharmacology , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/pathology
17.
Article in English | MEDLINE | ID: mdl-28137809

ABSTRACT

Synthetic peptides derived from the heptad repeat (HR) of fusion (F) proteins can be used as dominant negative inhibitors to inhibit the fusion mechanism of class I viral F proteins. Here, we have performed a stapled-peptide scan across the HR2 domain of the respiratory syncytial virus (RSV) F protein with the aim to identify a minimal domain capable of disrupting the formation of the postfusion six-helix bundle required for viral cell entry. Constraining the peptides with a single staple was not sufficient to inhibit RSV infection. However, the insertion of double staples led to the identification of novel short stapled peptides that display nanomolar potency in HEp-2 cells and are exceptionally robust to proteolytic degradation. By replacing each amino acid of the peptides by an alanine, we found that the substitution of residues 506 to 509, located in a patch of polar contacts between HR2 and HR1, severely affected inhibition. Finally, we show that intranasal delivery of the most potent peptide to BALB/c mice significantly decreased RSV infection in upper and lower respiratory tracts. The discovery of this minimal HR2 sequence as a means for inhibition of RSV infection provides the basis for further medicinal chemistry efforts toward developing RSV fusion antivirals.


Subject(s)
Antiviral Agents/pharmacology , Peptides/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Viral Fusion Proteins/chemistry , Virus Internalization/drug effects , Administration, Intranasal , Amino Acid Sequence , Amino Acid Substitution , Animals , Antiviral Agents/chemical synthesis , Binding Sites , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Peptides/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Stability , Proteolysis , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/growth & development , Sequence Alignment , Sequence Homology, Amino Acid , Virus Replication/drug effects
18.
Nanomedicine ; 13(2): 411-420, 2017 02.
Article in English | MEDLINE | ID: mdl-27553073

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of acute respiratory infections in children, yet no vaccine is available. The sole licensed preventive treatment against RSV is composed of a monoclonal neutralizing antibody (palivizumab), which targets a conformational epitope located on the fusion protein (F). Palivizumab reduces the burden of bronchiolitis but does not prevent infection. Thus, the development of RSV vaccines remains a priority. We previously evaluated nanorings formed by RSV nucleoprotein (N) as an RSV vaccine, as well as an immunostimulatory carrier for heterologous antigens. Here, we linked the palivizumab-targeted epitope (called FsII) to N, to generate N-FsII-nanorings. Intranasal N-FsII immunization elicited anti-F antibodies in mice that were non-neutralizing in vitro. Nevertheless, RSV-challenged animals were better protected against virus replication than mice immunized with N-nanorings, especially in the upper airways. In conclusion, an N-FsII-focused vaccine is an attractive candidate combining N-specific cellular immunity and F-specific antibodies for protection.


Subject(s)
Epitopes , Nanoparticles , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Viruses , Viral Fusion Proteins , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Mice , Palivizumab , Respiratory Syncytial Virus Infections/prevention & control , Sigmodontinae
19.
J Virol ; 89(8): 4421-33, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653447

ABSTRACT

UNLABELLED: The minimum requirement for an active RNA-dependent RNA polymerase of respiratory syncytial virus (RSV) is a complex made of two viral proteins, the polymerase large protein (L) and the phosphoprotein (P). Here we have investigated the domain on P that is responsible for this critical P-L interaction. By use of recombinant proteins and serial deletions, an L binding site was mapped in the C-terminal region of P, just upstream of the N-RNA binding site. The role of this molecular recognition element of about 30 amino acid residues in the L-P interaction and RNA polymerase activity was evaluated in cellula using an RSV minigenome system and site-directed mutagenesis. The results highlighted the critical role of hydrophobic residues located in this region. IMPORTANCE: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine and no good antivirals against RSV are available, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. Like all negative-strand RNA viruses, RSV codes for its own machinery to replicate and transcribe its genome. The core of this machinery is composed of two proteins, the phosphoprotein (P) and the large protein (L). Here, using recombinant proteins, we have mapped and characterized the P domain responsible for this L-P interaction and the formation of an active L-P complex. These findings extend our understanding of the mechanism of action of RSV RNA polymerase and allow us to define a new target for the development of drugs against RSV.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Multiprotein Complexes/genetics , Phosphoproteins/genetics , Recombinant Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Amino Acid Motifs/genetics , Base Sequence , Cell Line , DNA-Directed RNA Polymerases/metabolism , Escherichia coli , Humans , Hydrophobic and Hydrophilic Interactions , Immunoblotting , Immunoprecipitation , Microscopy, Fluorescence , Molecular Sequence Data , Multiprotein Complexes/metabolism , Mutagenesis, Site-Directed , Phosphoproteins/metabolism , Plasmids/genetics , Protein Interaction Mapping , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Respiratory Syncytial Virus, Human/metabolism , Sequence Analysis, DNA
20.
J Virol ; 89(7): 3484-96, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25568210

ABSTRACT

UNLABELLED: The RNA genome of respiratory syncytial virus (RSV) is constitutively encapsidated by the viral nucleoprotein N, thus forming a helical nucleocapsid. Polymerization of N along the genomic and antigenomic RNAs is concomitant to replication and requires the preservation of an unassembled monomeric nucleoprotein pool. To this end, and by analogy with Paramyxoviridae and Rhabdoviridae, it is expected that the viral phosphoprotein P acts as a chaperone protein, forming a soluble complex with the RNA-free form of N (N(0)-P complex). Here, we have engineered a mutant form of N that is monomeric, is unable to bind RNA, still interacts with P, and could thus mimic the N(0) monomer. We used this N mutant, designated N(mono), as a substitute for N(0) in order to characterize the P regions involved in the N(0)-P complex formation. Using a series of P fragments, we determined by glutathione S-transferase (GST) pulldown assays that the N and C termini of P are able to interact with N(mono). We analyzed the functional role of amino-terminal residues of P by site-directed mutagenesis, using an RSV polymerase activity assay based on a human RSV minireplicon, and found that several residues were critical for viral RNA synthesis. Using GST pulldown and surface plasmon resonance assays, we showed that these critical residues are involved in the interaction between P[1-40] peptide and N(mono) in vitro. Finally, we showed that overexpression of the peptide P[1-29] can inhibit the polymerase activity in the context of the RSV minireplicon, thus demonstrating that targeting the N(0)-P interaction could constitute a potential antiviral strategy. IMPORTANCE: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine or efficient antiviral treatment is available against RSV, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. RSV phosphoprotein P, the main RNA polymerase cofactor, is believed to function as a chaperon protein, maintaining N as a nonassembled, RNA-free protein (N(0)) competent for RNA encapsidation. In this paper, we provide the first evidence, to our knowledge, that the N terminus of P contains a domain that binds specifically to this RNA-free form of N. We further show that overexpression of a small peptide spanning this region of P can inhibit viral RNA synthesis. These findings extend our understanding of the function of RSV RNA polymerase and point to a new target for the development of drugs against this virus.


Subject(s)
Nucleocapsid Proteins/metabolism , Protein Interaction Mapping , Respiratory Syncytial Virus, Human/physiology , Viral Structural Proteins/metabolism , Animals , Binding Sites , Cell Line , Centrifugation/methods , Cricetinae , DNA Mutational Analysis , Mutagenesis, Site-Directed , Protein Binding , Respiratory Syncytial Virus, Human/genetics , Surface Plasmon Resonance , Viral Structural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL