Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239823

ABSTRACT

Atherosclerotic cardiovascular disease (ACVD) is the leading cause of death worldwide. Although current therapies, such as statins, have led to a marked reduction in morbidity and mortality from ACVD, they are associated with considerable residual risk for the disease together with various adverse side effects. Natural compounds are generally well-tolerated; a major recent goal has been to harness their full potential in the prevention and treatment of ACVD, either alone or together with existing pharmacotherapies. Punicalagin (PC) is the main polyphenol present in pomegranates and pomegranate juice and demonstrates many beneficial actions, including anti-inflammatory, antioxidant, and anti-atherogenic properties. The objective of this review is to inform on our current understanding of the pathogenesis of ACVD and the potential mechanisms underlying the beneficial actions of PC and its metabolites in the disease, including the attenuation of dyslipidemia, oxidative stress, endothelial cell dysfunction, foam cell formation, and inflammation mediated by cytokines and immune cells together with the regulation of proliferation and migration of vascular smooth muscle cells. Some of the anti-inflammatory and antioxidant properties of PC and its metabolites are due to their strong radical-scavenging activities. PC and its metabolites also inhibit the risk factors of atherosclerosis, including hyperlipidemia, diabetes mellitus, inflammation, hypertension, obesity, and non-alcoholic fatty liver disease. Despite the promising findings that have emerged from numerous in vitro, in vivo, and clinical studies, deeper mechanistic insights and large clinical trials are required to harness the full potential of PC and its metabolites in the prevention and treatment of ACVD.


Subject(s)
Antioxidants , Atherosclerosis , Humans , Antioxidants/therapeutic use , Antioxidants/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Risk Factors , Inflammation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674687

ABSTRACT

Inflammatory disorders such as atherosclerosis, diabetes and rheumatoid arthritis are regulated by cytokines and other inflammatory mediators. Current treatments for these conditions are associated with significant side effects and do not completely suppress inflammation. The benefits of diet, especially the role of specific components, are poorly understood. Polyunsaturated fatty acids (PUFAs) have several beneficial health effects. The majority of studies on PUFAs have been on omega-3 fatty acids. This review will focus on a less studied fatty acid, pinolenic acid (PNLA) from pine nuts, which typically constitutes up to 20% of its total fatty acids. PNLA is emerging as a dietary PUFA and a promising supplement in the prevention of inflammatory disorders or as an alternative therapy. Some studies have shown the health implications of pine nuts oil (PNO) and PNLA in weight reduction, lipid-lowering and anti-diabetic actions as well as in suppression of cell invasiveness and motility in cancer. However, few reviews have specifically focused on the biological and anti-inflammatory effects of PNLA. Furthermore, in recent bioinformatic studies on human samples, the expression of many mRNAs and microRNAs was regulated by PNLA indicating potential transcriptional and post-transcriptional regulation of inflammatory and metabolic processes. The aim of this review is to summarize, highlight, and evaluate research findings on PNO and PNLA in relation to potential anti-inflammatory benefits and beneficial metabolic changes. In this context, the focus of the review is on the potential actions of PNLA on inflammation along with modulation of lipid metabolism and oxidative stress based on data from both in vitro and in vivo experiments, and human findings, including gene expression analysis.


Subject(s)
Fatty Acids, Omega-3 , Nuts , Humans , Inflammation/drug therapy , Linolenic Acids/pharmacology , Linolenic Acids/therapeutic use , Fatty Acids, Unsaturated/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Fatty Acids, Omega-3/therapeutic use
3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835055

ABSTRACT

Probiotic bacteria have many protective effects against inflammatory disorders, though the mechanisms underlying their actions are poorly understood. The Lab4b consortium of probiotics contains four strains of lactic acid bacteria and bifidobacteria that are reflective of the gut of newborn babies and infants. The effect of Lab4b on atherosclerosis, an inflammatory disorder of the vasculature, has not yet been determined and was investigated on key processes associated with this disease in human monocytes/macrophages and vascular smooth muscle cells in vitro. The Lab4b conditioned medium (CM) attenuated chemokine-driven monocytic migration, monocyte/macrophage proliferation, uptake of modified LDL and macropinocytosis in macrophages together with the proliferation and platelet-derived growth factor-induced migration of vascular smooth muscle cells. The Lab4b CM also induced phagocytosis in macrophages and cholesterol efflux from macrophage-derived foam cells. The effect of Lab4b CM on macrophage foam cell formation was associated with a decrease in the expression of several key genes implicated in the uptake of modified LDL and induced expression of those involved in cholesterol efflux. These studies reveal, for the first time, several anti-atherogenic actions of Lab4b and strongly implicate further studies in mouse models of the disease in vivo and in clinical trials.


Subject(s)
Atherosclerosis , Probiotics , Animals , Mice , Infant, Newborn , Humans , Macrophages/metabolism , Foam Cells/metabolism , Atherosclerosis/metabolism , Cholesterol/metabolism , Lipoproteins, LDL/metabolism
4.
Rheumatology (Oxford) ; 61(3): 992-1004, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34080609

ABSTRACT

OBJECTIVES: In pre-clinical studies, pinolenic acid (PNLA), an omega-6-polyunsaturated fatty acid from pine nuts, has shown anti-inflammatory effects. We aimed to investigate the effect of PNLA in human cell lines and peripheral blood mononuclear cells (PBMCs) from RA patients and healthy controls (HCs). METHODS: A modified Boyden chamber was used to assess chemokine-induced migration of THP-1 monocytes. Macropinocytosis was assessed using Lucifer yellow and oxidized low-density lipoprotein (oxLDL) uptake using DiI-labelled oxLDL in THP-1 macrophages and human monocyte-derived macrophages (HMDMs). IL-6, TNF-α and prostaglandin E2 (PGE2) release by lipopolysaccharide (LPS)-stimulated PBMCs from RA patients and HCs was measured by ELISA. The transcriptomic profile of PNLA-treated, LPS-activated PBMCs was investigated by RNA-sequencing. RESULTS: PNLA reduced THP-1 cell migration by 55% (P < 0.001). Macropinocytosis and DiI-oxLDL uptake were reduced by 50% (P < 0.001) and 40% (P < 0.01), respectively, in THP-1 macrophages and 40% (P < 0.01) and 25% (P < 0.05), respectively, in HMDMs. PNLA reduced IL-6 and TNF-α release from LPS-stimulated PBMCs from RA patients by 60% (P < 0.001) and from HCs by 50% and 35%, respectively (P < 0.01). PNLA also reduced PGE2 levels in such PBMCs from RA patients and HCs (P < 0.0001). Differentially expressed genes whose expression was upregulated included pyruvate dehydrogenase kinase-4, plasminogen activator inhibitor-1, fructose bisphosphatase1 and N-Myc downstream-regulated gene-2, which have potential roles in regulating immune and metabolic pathways. Pathway analysis predicted upstream activation of the nuclear receptors peroxisome proliferator-activated receptors involved in anti-inflammatory processes, and inhibition of nuclear factor-κB and signal transducer and activator of transcription 1. CONCLUSIONS: PNLA has immune-metabolic effects on monocytes and PBMCs that are pathogenic in RA and atherosclerosis. Dietary PNLA supplementation may be beneficial in RA.


Subject(s)
Leukocytes, Mononuclear/drug effects , Linolenic Acids/pharmacology , Arthritis, Rheumatoid , Case-Control Studies , Cell Movement/drug effects , Dinoprostone/metabolism , Gene Expression Profiling , Humans , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Lipoproteins, LDL/metabolism , Macrophages/drug effects , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
5.
FASEB J ; 35(10): e21892, 2021 10.
Article in English | MEDLINE | ID: mdl-34569651

ABSTRACT

Atherosclerosis is a chronic inflammatory disorder of the vasculature regulated by cytokines. We have previously shown that extracellular signal-regulated kinase-1/2 (ERK1/2) plays an important role in serine 727 phosphorylation of signal transducer and activator of transcription-1 (STAT1) transactivation domain, which is required for maximal interferon-γ signaling, and the regulation of modified LDL uptake by macrophages in vitro. Unfortunately, the roles of ERK1/2 and STAT1 serine 727 phosphorylation in atherosclerosis are poorly understood and were investigated using ERK1 deficient mice (ERK2 knockout mice die in utero) and STAT1 knock-in mice (serine 727 replaced by alanine; STAT1 S727A). Mouse Atherosclerosis RT² Profiler PCR Array analysis showed that ERK1 deficiency and STAT1 S727A modification produced significant changes in the expression of 18 and 49 genes, respectively, in bone marrow-derived macrophages, with 17 common regulated genes that included those that play key roles in inflammation and cell migration. Indeed, ERK1 deficiency and STAT1 S727A modification attenuated chemokine-driven migration of macrophages with the former also impacting proliferation and the latter phagocytosis. In LDL receptor deficient mice fed a high fat diet, both ERK1 deficiency and STAT1 S727A modification produced significant reduction in plaque lipid content, albeit at different time points. The STAT1 S727A modification additionally caused a significant reduction in plaque content of macrophages and CD3 T cells and diet-induced cardiac hypertrophy index. In addition, there was a significant increase in plasma IL-2 levels and a trend toward increase in plasma IL-5 levels. These studies demonstrate important roles of STAT1 S727 phosphorylation in particular in the regulation of atherosclerosis-associated macrophage processes in vitro together with plaque lipid content and inflammation in vivo, and support further assessment of its therapeutical potential.


Subject(s)
Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Receptors, LDL/deficiency , STAT1 Transcription Factor/metabolism , Animals , Gene Knock-In Techniques , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Macrophages/pathology , Mice , Mice, Knockout , Phosphorylation , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Receptors, LDL/metabolism , STAT1 Transcription Factor/genetics
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1562-1572, 2018 May.
Article in English | MEDLINE | ID: mdl-29454074

ABSTRACT

Atherosclerosis, a chronic inflammatory disorder of medium and large arteries and an underlying cause of cardiovascular disease (CVD), is responsible for a third of all global deaths. Current treatments for CVD, such as optimized statin therapy, are associated with considerable residual risk and several side effects in some patients. The outcome of research on the identification of alternative pharmaceutical agents for the treatment of CVD has been relatively disappointing with many promising leads failing at the clinical level. Nutraceuticals, products from food sources with health benefits beyond their nutritional value, represent promising agents in the prevention of CVD or as an add-on therapy with current treatments. This review will highlight the potential of several nutraceuticals, including polyunsaturated fatty acids, flavonoids and other polyphenols, as anti-CVD therapies based on clinical and pre-clinical mechanism-based studies.


Subject(s)
Atherosclerosis/drug therapy , Dietary Supplements , Fatty Acids, Unsaturated/therapeutic use , Flavonoids/therapeutic use , Polyphenols/therapeutic use , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Humans
7.
Biochim Biophys Acta ; 1852(7): 1498-510, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25887161

ABSTRACT

Atherosclerosis, the underlying cause of myocardial infarction and thrombotic cerebrovascular events, is responsible for the majority of deaths in westernized societies. Mortality from this disease is also increasing at a marked rate in developing countries due to the acquisition of a westernized lifestyle accompanied with elevated rates of obesity and diabetes. Atherosclerosis is recognized as a chronic inflammatory disorder associated with lipid accumulation and the development of fibrotic plaques within the walls of medium and large arteries. A range of immune cells, such as macrophages and T-lymphocytes, through the action of various cytokines, such as interleukins-1 and -33, transforming growth factor-ß and interferon-γ, orchestrates the inflammatory response in this disease. The disease is also characterized by marked dysfunction in lipid homeostasis and signaling pathways that control the inflammatory response. This review will discuss the molecular basis of atherosclerosis with particular emphasis on the roles of the immune cells and cytokines along with the dysfunctional lipid homeostasis and cell signaling associated with this disease.


Subject(s)
Atherosclerosis/metabolism , Lipid Metabolism , Signal Transduction , Animals , Atherosclerosis/immunology , Homeostasis , Humans , Inflammation/metabolism
8.
J Cell Physiol ; 2015 May 07.
Article in English | MEDLINE | ID: mdl-25953328

ABSTRACT

The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have therefore investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies therefore reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages. This article is protected by copyright. All rights reserved.

9.
J Cell Biochem ; 116(9): 2032-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25752819

ABSTRACT

The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have, therefore, investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies, therefore, reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Hydroxycholesterols/pharmacology , Macrophages/drug effects , Protein Kinase C/metabolism , Tretinoin/pharmacology , ATP Binding Cassette Transporter 1/antagonists & inhibitors , Alitretinoin , Cell Line , Gene Expression Regulation/drug effects , Humans , Indoles/pharmacology , Liver X Receptors , MAP Kinase Signaling System/drug effects , Macrophages/cytology , Maleimides/pharmacology , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/metabolism , Retinoid X Receptors/agonists , Retinoid X Receptors/metabolism
10.
Biochim Biophys Acta ; 1822(10): 1608-16, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22705205

ABSTRACT

The anti-atherogenic cytokine, TGF-ß, plays a key role during macrophage foam cell formation by modulating the expression of key genes involved in the control of cholesterol homeostasis. Unfortunately, the molecular mechanisms underlying these actions of TGF-ß remain poorly understood. In this study we examine the effect of TGF-ß on macrophage cholesterol homeostasis and delineate the role of Smads-2 and -3 during this process. Western blot analysis showed that TGF-ß induces a rapid phosphorylation-dependent activation of Smad-2 and -3 in THP-1 and primary human monocyte-derived macrophages. Small interfering RNA-mediated knockdown of Smad-2/3 expression showed that the TGF-ß-mediated regulation of key genes implicated in the uptake of modified low density lipoproteins and the efflux of cholesterol from foam cells was Smad-dependent. Additionally, through the use of virally delivered Smad-2 and/or Smad-3 short hairpin RNA, we demonstrate that TGF-ß inhibits the uptake of modified LDL by macrophages through a Smad-dependent mechanism and that the TGF-ß-mediated regulation of CD36, lipoprotein lipase and scavenger receptor-A gene expression was dependent on Smad-2. These studies reveal a crucial role for Smad signaling, particularly Smad-2, in the inhibition of foam cell formation by TGF-ß through the regulation of expression of key genes involved in the control of macrophage cholesterol homeostasis.


Subject(s)
Lipoproteins, LDL/metabolism , Macrophages/metabolism , Smad2 Protein/metabolism , Transforming Growth Factor beta/metabolism , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cells, Cultured , Cholesterol/genetics , Cholesterol/metabolism , Foam Cells/metabolism , Gene Expression , Homeostasis , Humans , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoproteins, LDL/genetics , Phosphorylation , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolism , Signal Transduction , Smad2 Protein/genetics , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta/genetics
11.
Cytokine ; 64(1): 234-42, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23859810

ABSTRACT

Atherosclerosis is an inflammatory disease of the vasculature regulated by cytokines. Macrophages play a crucial role at all stages of this disease, including regulation of foam cell formation, the inflammatory response and stability of atherosclerotic plaques. For example, matrix metalloproteinases produced by macrophages play an important role in modulating plaque stability. More recently, the ADAMTS proteases, which are known to play a key role in the control of cartilage degradation during arthritis, have been found to be expressed in atherosclerotic lesions and suggested to have potentially important functions in the control of plaque stability. Unfortunately, the action of cytokines on the expression of ADAMTS family in macrophages is poorly understood. We have investigated the effect of classical cytokines (IFN-γ and TGF-ß) and those that have been recently identified (TL1A and IL-17) on the expression of ADAMTS-1, -4 and -5 in human macrophages. The expression of all three ADAMTS members was induced during differentiation of monocytes into macrophages. TGF-ß had a differential action with induction of ADAMTS-1 and -5 expression and attenuation in the levels of ADAMTS-4. In contrast, IFN-γ suppressed the expression of ADAMTS-1 without having an effect on ADAMTS-4 and -5. Although TL-1A or IL-17A alone had little effect on the expression of all the members, they induced their expression synergistically when present together. These studies provide new insight into the regulation of key ADAMTS family members in human macrophages by major cytokines in relation to atherosclerosis.


Subject(s)
ADAM Proteins/metabolism , Atherosclerosis/metabolism , Macrophages/metabolism , Procollagen N-Endopeptidase/metabolism , ADAM Proteins/biosynthesis , ADAMTS1 Protein , ADAMTS4 Protein , ADAMTS5 Protein , Cell Differentiation , Cell Line, Tumor , Humans , Interferon-gamma/metabolism , Interleukin-17/metabolism , Macrophages/immunology , Monocytes/metabolism , Plaque, Atherosclerotic/immunology , Procollagen N-Endopeptidase/biosynthesis , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism
12.
Cytokine ; 64(1): 357-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23791479

ABSTRACT

A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-ß, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-ß-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process.


Subject(s)
Atherosclerosis/pathology , Foam Cells/pathology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukins/metabolism , Pinocytosis/drug effects , Transforming Growth Factor beta/metabolism , Atherosclerosis/immunology , Biological Transport/drug effects , Cell Differentiation , Cells, Cultured , Cytochalasin D/pharmacology , Foam Cells/immunology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Humans , Inflammation/immunology , Interleukin-33 , Lipoproteins, LDL/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA Interference , RNA, Small Interfering , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
13.
Mol Nutr Food Res ; 67(14): e2200716, 2023 07.
Article in English | MEDLINE | ID: mdl-37150886

ABSTRACT

SCOPE: A prospective study of 34492 participants shows an inverse association between (+)-catechin intake and coronary heart disease. The effects of (+)-catechin on atherosclerosis and associated risk factors are poorly understood and are investigated. METHODS AND RESULTS: (+)-Catechin attenuates reactive oxygen species production in human macrophages, endothelial cells and vascular smooth muscle cells, chemokine-driven monocytic migration, and proliferation of human macrophages and their expression of several pro-atherogenic genes. (+)-Catechin also improves oxidized LDL-mediated mitochondrial membrane depolarization in endothelial cells and attenuates growth factor-induced smooth muscle cell migration. In C57BL/6J mice fed high fat diet (HFD) for 3 weeks, (+)-catechin attenuates plasma levels of triacylglycerol and interleukin (IL)-1ß and IL-2, produces anti-atherogenic changes in liver gene expression, and reduces levels of white blood cells, myeloid-derived suppressor cells, Lin- Sca+ c-Kit+ cells, and common lymphoid progenitor cells within the bone marrow. In LDL receptor deficient mice fed HFD for 12 weeks, (+)-catechin attenuates atherosclerotic plaque burden and inflammation with reduced macrophage content and increased markers of plaque stability; smooth muscle cell and collagen content. CONCLUSION: This study provides novel, detailed insights into the cardio-protective actions of (+)-catechin together with underlying molecular mechanisms and supports further assessments of its beneficial effects in human trials.


Subject(s)
Atherosclerosis , Catechin , Plaque, Atherosclerotic , Humans , Mice , Animals , Plaque, Atherosclerotic/metabolism , Catechin/pharmacology , Catechin/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Prospective Studies , Mice, Knockout , Atherosclerosis/metabolism , Inflammation/metabolism , Receptors, LDL/metabolism , Risk Factors
14.
Front Immunol ; 14: 1240679, 2023.
Article in English | MEDLINE | ID: mdl-37849759

ABSTRACT

Chronic Kidney Disease (CKD) is associated with markedly increased cardiovascular (CV) morbidity and mortality. Chronic inflammation, a hallmark of both CKD and CV diseases (CVD), is believed to drive this association. Pro-inflammatory endogenous TLR agonists, Damage-Associated Molecular Patterns (DAMPs), have been found elevated in CKD patients' plasma and suggested to promote CVD, however, confirmation of their involvement, the underlying mechanism(s), the extent to which individual DAMPs contribute to vascular pathology in CKD and the evaluation of potential therapeutic strategies, have remained largely undescribed. A multi-TLR inhibitor, soluble TLR2, abrogated chronic vascular inflammatory responses and the increased aortic atherosclerosis-associated gene expression observed in nephropathic mice, without compromising infection clearance. Mechanistically, we confirmed elevation of 4 TLR DAMPs in CKD patients' plasma, namely Hsp70, Hyaluronic acid, HMGB-1 and Calprotectin, which displayed different abilities to promote key cellular responses associated with vascular inflammation and progression of atherosclerosis in a TLR-dependent manner. These included loss of trans-endothelial resistance, enhanced monocyte migration, increased cytokine production, and foam cell formation by macrophages, the latter via cholesterol efflux inhibition. Calprotectin and Hsp70 most consistently affected these functions. Calprotectin was further elevated in CVD-diagnosed CKD patients and strongly correlated with the predictor of CV events CRP. In nephropathic mice, Calprotectin blockade robustly reduced vascular chronic inflammatory responses and pro-atherosclerotic gene expression in the blood and aorta. Taken together, these findings demonstrated the critical extent to which the DAMP-TLR pathway contributes to vascular inflammatory and atherogenic responses in CKD, revealed the mechanistic contribution of specific DAMPs and described two alternatives therapeutic approaches to reduce chronic vascular inflammation and lower CV pathology in CKD.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Renal Insufficiency, Chronic , Humans , Animals , Mice , Renal Insufficiency, Chronic/pathology , Alarmins , Atherosclerosis/drug therapy , Inflammation/metabolism , Cardiovascular Diseases/complications , Leukocyte L1 Antigen Complex
15.
Curr Atheroscler Rep ; 14(3): 284-93, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22419222

ABSTRACT

Liver X receptors (LXRs) belong to the nuclear receptor superfamily of ligand-dependent transcription factors. LXRs are activated by oxysterols, metabolites of cholesterol, and therefore act as intracellular sensors of this lipid. There are two LXR genes (α and ß) that display distinct tissue/cell expression profiles. LXRs interact with regulatory sequences in target genes as heterodimers with retinoid X receptor. Such direct targets of LXR actions include important genes implicated in the control of lipid homeostasis, particularly reverse cholesterol transport. In addition, LXRs attenuate the transcription of genes associated with the inflammatory response indirectly by transrepression. In this review, we describe recent evidence that both highlights the key roles of LXRs in atherosclerosis and inflammation and provides novel insights into the mechanisms underlying their actions. In addition, we discuss the major limitations of LXRs as therapeutic targets for the treatment of atherosclerosis and how these are being addressed.


Subject(s)
Atherosclerosis/metabolism , Inflammation/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Orphan Nuclear Receptors/physiology , Animals , Humans , Liver X Receptors
16.
J Immunol ; 185(5): 3041-8, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20675591

ABSTRACT

The proinflammatory cytokine IFN-gamma is a master regulator of atherosclerosis and mediates its cellular actions mainly through STAT1. Unfortunately, the impact of other IFN-gamma inducible pathways on STAT1 activation and the regulation of downstream responses associated with atherosclerosis in human macrophages are poorly understood and were therefore investigated. In this study, we demonstrate that the IFN-gamma-mediated phosphorylation of STAT1 on Ser(727), crucial for its maximal activity, was attenuated in human macrophages by pharmacological inhibition of ERK. In these cells, IFN-gamma induced changes in the expression of several key genes implicated in atherosclerosis, such as MCP-1, through an ERK-dependent mechanism. Additionally, the IFN-gamma-induced activity of STAT1-responsive promoters was attenuated by transfection of dominant-negative forms of ERK and other key components of this pathway. Furthermore, the IFN-gamma-induced uptake of acetylated and oxidized low-density lipoprotein by human macrophages was attenuated by pharmacological inhibition or RNA interference-mediated knockdown of ERK. These studies suggest a critical role for ERK signaling in the IFN-gamma-mediated changes in macrophage cholesterol homeostasis and gene expression during atherosclerosis.


Subject(s)
Atherosclerosis/immunology , Gene Expression Regulation/immunology , Interferon-gamma/physiology , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Mitogen-Activated Protein Kinase 1/physiology , Mitogen-Activated Protein Kinase 3/physiology , STAT1 Transcription Factor/metabolism , Animals , Atherosclerosis/enzymology , Atherosclerosis/genetics , Cells, Cultured , Hep G2 Cells , Humans , Interferon-gamma/antagonists & inhibitors , Macrophages/enzymology , Macrophages/immunology , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/deficiency , Mitogen-Activated Protein Kinase 3/genetics , Oxidation-Reduction , RNA, Small Interfering/genetics , Signal Transduction/genetics , Signal Transduction/immunology
17.
J Immunol ; 185(2): 1222-9, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20543107

ABSTRACT

The development of atherosclerosis, a chronic inflammatory disease characterized by the formation of arterial fibrotic plaques, has been shown to be reduced by IL-33 in vivo. However, whether IL-33 can directly affect macrophage foam cell formation, a key feature of atherosclerotic plaques, has not been determined. In this study, we investigated whether IL-33 reduces macrophage foam cell accumulation in vivo and if IL-33 reduces their formation in vitro using THP-1 and primary human monocyte-derived macrophages. In Apolipoprotein E(-/-) mice fed on a high fat diet, IL-33 treatment significantly reduced the accumulation of macrophage-derived foam cells in atherosclerotic plaques. IL-33 also reduced macrophage foam cell formation in vitro by decreasing acetylated and oxidized low-density lipoprotein uptake, reducing intracellular total and esterified cholesterol content and enhancing cholesterol efflux. These changes were associated with IL-33-mediated reduction in the expression of genes involved in modified low-density lipoprotein uptake, such as CD36, and simultaneous increase in genes involved in cholesterol efflux, including Apolipoprotein E, thereby providing a mechanism for such an action for this cytokine. IL-33 also decreased the expression of key genes implicated in cholesterol esterification and triglyceride storage, including Acyl-CoA:cholesterol acyltransferase 1 and Adipocyte differentiation-related protein. Furthermore, using bone marrow-derived macrophages from ST2(-/-) mice, we demonstrate that the IL-33 receptor, ST2, is integral to the action of IL-33 on macrophage foam cell formation. In conclusion, IL-33 has a protective role in atherosclerosis by reducing macrophage foam cell formation suggesting that IL-33 maybe a potential therapeutic agent against atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Foam Cells/drug effects , Interleukins/pharmacology , Macrophages/drug effects , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Blotting, Western , Cell Line , Cells, Cultured , Cholesterol/metabolism , Cholesterol Esters/metabolism , Female , Foam Cells/metabolism , Foam Cells/pathology , Gene Expression/drug effects , Humans , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacokinetics , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Reverse Transcriptase Polymerase Chain Reaction
18.
J Immunol ; 184(10): 5827-34, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20410491

ABSTRACT

TNF-like protein 1A (TL1A), a TNF superfamily cytokine that binds to death receptor 3 (DR3), is highly expressed in macrophage foam cell-rich regions of atherosclerotic plaques, although its role in foam cell formation has yet to be elucidated. We investigated whether TL1A can directly stimulate macrophage foam cell formation in both THP-1 and primary human monocyte-derived macrophages with the underlying mechanisms involved. We demonstrated that TL1A promotes foam cell formation in human macrophages in vitro by increasing both acetylated and oxidized low-density lipoprotein uptake, by enhancing intracellular total and esterified cholesterol levels and reducing cholesterol efflux. This imbalance in cholesterol homeostasis is orchestrated by TL1A-mediated changes in the mRNA and protein expression of several genes implicated in the uptake and efflux of cholesterol, such as scavenger receptor A and ATP-binding cassette transporter A1. Furthermore, through the use of virally delivered DR3 short-hairpin RNA and bone marrow-derived macrophages from DR3 knockout mice, we demonstrate that DR3 can regulate foam cell formation and contributes significantly to the action of TL1A in this process in vitro. We show, for the first time, a novel proatherogenic role for both TL1A and DR3 that implicates this pathway as a target for the therapeutic intervention of atherosclerosis.


Subject(s)
Cell Differentiation/immunology , Foam Cells/cytology , Foam Cells/immunology , Receptors, Tumor Necrosis Factor, Member 25/physiology , Signal Transduction/immunology , Tumor Necrosis Factor Ligand Superfamily Member 15/physiology , Animals , Atherosclerosis/immunology , Atherosclerosis/pathology , Biological Transport/immunology , Cell Line, Tumor , Cells, Cultured , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cholesterol Ester Transfer Proteins/metabolism , Female , Foam Cells/pathology , Humans , Intracellular Fluid/immunology , Intracellular Fluid/metabolism , Lipoproteins, LDL/metabolism , Mice , Mice, Knockout , Receptors, Tumor Necrosis Factor, Member 25/deficiency , Up-Regulation/immunology
19.
Methods Mol Biol ; 2419: 247-255, 2022.
Article in English | MEDLINE | ID: mdl-35237968

ABSTRACT

Macrophage foam cell formation plays a crucial role in the initiation and progression of atherosclerosis. Macrophages uptake native and modified low density lipoprotein (LDL) through either receptor-dependent or receptor-independent mechanisms to transform into lipid laden foam cells. Foam cells are involved in the formation of fatty streak that is seen during the early stages of atherosclerosis development and therefore represents a promising therapeutic target. Normal or modified lipoproteins labeled with fluorescent dyes such as 1,1'-dioctadecyl-3-3-3',3'-tetramethylindocarbocyanine perchlorate (Dil) are often used to monitor their internalization during foam cell formation. In addition, the fluorescent dye Lucifer Yellow (LY) is widely used as a marker for macropinocytosis activity. In this chapter, we describe established methods for monitoring modified lipoprotein uptake and macropinocytosis during macrophage foam cell formation.


Subject(s)
Atherosclerosis , Foam Cells , Humans , Lipoproteins, LDL , Macrophages , Pinocytosis
20.
Methods Mol Biol ; 2419: 21-37, 2022.
Article in English | MEDLINE | ID: mdl-35237956

ABSTRACT

Inflammation is a critical driver of all stages of atherosclerosis, from lesion development to plaque rupture. Cytokines are mediators of the immune response and in atherosclerosis, the balance of anti- and pro-inflammatory cytokines is tipped in favor of the latter, resulting in persistent and unresolved inflammation. Although reducing plasma cholesterol levels mainly via the use of statins has positively impacted patient outcomes and reduced mortality rates, the presence of significant residual inflammation and cardiovascular risk posttherapy emphasizes the prevailing risk of primary and secondary events driven by inflammation independently of hyperlipidemia. Given the dominant role of inflammation in driving pathogenesis, alternative therapeutic avenues beyond targeting lowering of plasma lipids are required. This chapter will discuss the role of inflammation and pro-inflammatory cytokines in driving atherogenesis and disease progression, the therapeutic potential of targeting cytokines for atherosclerosis and promising avenues in this area.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Atherosclerosis/pathology , Cytokines , Humans , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Inflammation Mediators , Plaque, Atherosclerotic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL