Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 580(7804): 517-523, 2020 04.
Article in English | MEDLINE | ID: mdl-32322066

ABSTRACT

A high tumour mutational burden (hypermutation) is observed in some gliomas1-5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Mutation , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/immunology , DNA Mismatch Repair/genetics , Gene Frequency , Genome, Human/drug effects , Genome, Human/genetics , Glioma/immunology , Humans , Male , Mice , Microsatellite Repeats/drug effects , Microsatellite Repeats/genetics , Mutagenesis/drug effects , Mutation/drug effects , Phenotype , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Sequence Analysis, DNA , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
2.
Oncologist ; 29(1): e47-e58, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37619245

ABSTRACT

The authors present a cohort of 661 young adult glioblastomas diagnosed using 2016 WHO World Health Organization Classification of Tumors of the Central Nervous System, utilizing comprehensive genomic profiling (CGP) to explore their genomic landscape and assess their relationship to currently defined disease entities. This analysis explored variants with evidence of pathogenic function, common copy number variants (CNVs), and several novel fusion events not described in literature. Tumor mutational burden (TMB) mutational signatures, anatomic location, and tumor recurrence are further explored. Using data collected from CGP, unsupervised machine-learning techniques were leveraged to identify 10 genomic classes in previously assigned young adult glioblastomas. The authors relate these molecular classes to current World Health Organization guidelines and reference current literature to give therapeutic and prognostic descriptions where possible.


Subject(s)
Central Nervous System Neoplasms , Glioblastoma , Humans , Young Adult , Glioblastoma/diagnosis , Glioblastoma/genetics , Retrospective Studies , Mutation , Neoplasm Recurrence, Local , Genomics/methods
3.
J Transl Med ; 22(1): 141, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326843

ABSTRACT

BACKGROUND: Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS: Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS: The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS: CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Male , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen/metabolism , Cetrimonium/therapeutic use , Retrospective Studies , Testis/chemistry , Testis/metabolism , Testis/pathology , Antigens, Neoplasm , Biomarkers, Tumor/genetics
4.
Genes Chromosomes Cancer ; 62(8): 460-470, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36862145

ABSTRACT

Gene fusions involving EWSR1 or FUS as the 5' partner have been reported in a diverse array of sarcomas. Here, we characterize the histopathology and genomics of six tumors harboring a gene fusion between EWSR1 or FUS and POU2AF3, an understudied, putative colorectal cancer predisposition gene. Striking morphologic features reminiscent of synovial sarcoma were observed including a biphasic appearance with variable fusiform to epithelioid cytomorphology and staghorn-type vasculature. RNA sequencing demonstrated variable breakpoints in EWSR1/FUS along with similar breakpoints in POU2AF3 that encompassed a 3' portion of this gene. For cases in which additional information was available, the behavior of these neoplasms was aggressive with local spread and/or distant metastases. Although further studies are needed to confirm the functional significance of our findings, POU2AF3 fusions to EWSR1 or FUS may define a novel type of POU2AF3-rearranged sarcomas with aggressive, malignant behavior.


Subject(s)
Sarcoma, Synovial , Sarcoma , Soft Tissue Neoplasms , Humans , RNA-Binding Protein EWS/genetics , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Gene Fusion , In Situ Hybridization, Fluorescence , Biomarkers, Tumor/genetics , Oncogene Proteins, Fusion/genetics , Neoplasm Proteins/genetics , RNA-Binding Protein FUS/genetics
5.
Oncologist ; 28(1): e26-e35, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36342081

ABSTRACT

BACKGROUND: B-cell primary central nervous system (CNS) lymphoma (PCL) is diffuse large B-cell lymphoma (DLBCL) confined to the CNS. Less than 50% of patients with PCL achieve complete remission with current therapies. We describe the findings from comprehensive genomic profiling (CGP) of a cohort of 69 patients with PCL, 36 cases of secondary CNS lymphoma (SCL), and 969 cases of DLBCL to highlight their differences and characterize the PCL cohort. In addition, we highlight the differences in frequency of germinal center B-cell like (GCB) and non-GCB subtypes and molecular subtypes, particularly MCD and EZH subtypes, between PCL and DLBCL. MATERIALS AND METHODS: Sixty-nine cases of B-cell PCL, 36 cases of secondary CNS lymphoma (SCL), and 969 cases of DLBCL were evaluated by CGP of 405 genes via DNAseq and 265 genes via RNAseq for fusions (FoundationOne Heme). Tumor mutational burden (TMB) was calculated from 1.23 Mb of sequenced DNA. RESULTS: Genomic alterations with significant differences between PCL and DLBCL included MYD88, ETV6, PIM1, PRDM1, CXCR4, TP53, and CREBBP, while only MYD88 was significantly different between SCL and DLBCL. PCL cases were significantly enriched for the MCD molecular subtypes, which have an excellent response to BTKi. We report a patient with a durable complete response to BTKi consistent with their genomic profile. EBV status, CD274 amplification, and TMB status suggest that 38% of PCL patients may benefit from ICPI; however further study is warranted. CONCLUSION: CGP of PCLs reveals biomarkers, genomic alterations, and molecular classifications predictive of BTKi efficacy and potential ICPI efficacy. Given the limitations of standard of care for PCL, CGP is critical to identify potential therapeutic approaches for patients in this rare form of lymphoma.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Myeloid Differentiation Factor 88 , Humans , Prognosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Germinal Center/pathology , Biomarkers, Tumor/genetics , Central Nervous System/pathology
6.
Cancer Causes Control ; 34(2): 133-140, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36284031

ABSTRACT

PURPOSE: Clinical trials advance the standard of care for patients. Patients enrolled in trials should represent the population who would benefit from the intervention in clinical practice. The aim of this study was to assess whether clinical trials enrolling patients with gynecologic cancers report racial and ethnic participant composition and to examine the level of diversity in clinical trials. METHODS: Using ClinicalTrials.gov, we identified clinical trials enrolling patients with ovarian, uterine/endometrial, cervical, vaginal, and vulvar cancers from 1988 to 2019. Race and ethnicity data were extracted from participant demographics. Descriptive statistics on race, ethnicity, cancer type, location, study status, and sponsor type were calculated. Among trials which reported race and/or ethnicity, sub-analyses were performed on composition of race and ethnicity by funding source, location, and completed study status. RESULTS: A total of 1,882 trials met inclusion criteria; only 179 trials (9.5%) reported race information. Of these, the racial distribution of enrollees was 66.9% White, 8.6% Asian, 8.5% Black/African American, 0.4% Indian/Alaskan Native, 0.1% Native Hawaiian/Pacific Islander, 1.0% more than one race, and 14.5% unknown. Only 100 (5.3%) trials reported ethnicity. Except for trials enrolling patients with cervical cancer which enrolled 65.2% White and 62.1% Non-Hispanic/Latino/a patients, enrollees in trials for other gynecologic cancers were over 80% White and 88% Non-Hispanic/Latino/a. Industry funded trials enrolled higher proportions of White (68.4%) participants than non-industry funded trials (57.5%). Domestic trials report race (11.5%) and ethnicity (7.6%) at higher rates than international trials (6.9% and 2.3%, respectively). Reporting of race (1.7% vs. 13.9%) and ethnicity (1.7% vs. 11.1%) has increased over time for patients enrolled in 2000 vs. 2018. CONCLUSION: Less than 10% of trials enrolling patients with gynecologic malignancies report racial/ethnic participant composition on ClinicalTrials.gov. Accurate reporting of participant race/ethnicity is imperative to ensuring minority representation in clinical trials.


Subject(s)
Clinical Trials as Topic , Ethnicity , Genital Neoplasms, Female , Female , Humans , Genital Neoplasms, Female/epidemiology , Genital Neoplasms, Female/therapy , Minority Groups , United States
7.
Oncologist ; 27(11): 919-929, 2022 11 03.
Article in English | MEDLINE | ID: mdl-35749302

ABSTRACT

BACKGROUND: Thymic malignancies represent a heterogeneous group of rare thoracic cancers, which are classified according to the World Health Organization histopathologic classification, that distinguishes thymomas from thymic carcinomas. Data regarding the biology of those tumors are limited in the literature, and the vast majority have been obtained using surgical specimens from early-stage disease. Meanwhile, treatment of advanced, refractory thymic tumors currently relies on chemotherapy, with limited efficacy. Comprehensive genomic profiling (CGP) of advanced, refractory tumors would open some opportunities for innovative treatments. PATIENTS AND METHODS: A total of 90 and 174 consecutive patients with thymoma or thymic carcinoma, respectively, for whom formalin-fixed, paraffin-embedded specimens from recurrent, refractory tumor were sequenced, were included. Sequencing was performed using hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of >500× for up to 315 cancer-related genes plus 37 introns from 28 genes frequently rearranged in cancer. RESULTS: Thymomas featured a low frequency of genomic alterations (average of 1.8/tumor), and low levels of TMB. The genomic alterations identified in more than 10% of cases were in the CDKN2A/B and TP53 genes. Amplification in the NTRK1 gene was found in an unresectable, stage III, type B3 thymoma. Thymic carcinomas featured a significantly higher frequency of alterations at 4.0/tumor (P < .0001). Clinically relevant genomic alterations were observed in the CDKN2A, KIT, and PTEN/PI3K/MTOR pathways. Elevated TMB in thymic carcinomas was uncommon with only 6% of cases featuring ≥10 mutations/Mb. CONCLUSIONS: Our cohort is the largest available so far, reporting on CGP of thymic epithelial tumors in the setting of advanced disease. The identification of clinically relevant genomic alterations in the KIT, PI3K, CDKN2A/B, or NTRK genes provides a strong rationale for potential precision medicine approaches using targeted agents. A subset of thymic carcinomas show high tumor mutation burden, what may be a predictor of efficacy of immune checkpoint inhibitors.


Subject(s)
Neoplasms, Glandular and Epithelial , Thymoma , Thymus Neoplasms , Humans , Thymoma/genetics , Thymus Neoplasms/genetics , Neoplasms, Glandular and Epithelial/genetics , Mutation , Genomics , Phosphatidylinositol 3-Kinases/genetics , Biomarkers , Biomarkers, Tumor/genetics
8.
Oncologist ; 27(10): 839-848, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35598205

ABSTRACT

BACKGROUND: In patients with non-small cell lung cancer (NSCLC), 10%-40% will eventually develop brain metastases. We present the clinicopathologic, genomic, and biomarker landscape of a large cohort of NSCLC brain metastases (NSCLC-BM) samples. MATERIALS AND METHODS: We retrospectively analyzed 3035 NSCLC-BM tested with comprehensive genomic profiling (CGP) during routine clinical care. In addition, we compared the NSCLC-BM to a separate cohort of 7277 primary NSCLC (pNSCLC) specimens. Finally, we present data on 67 paired patients with NSCLC-BM and pNSCLC. RESULTS: Comprehensive genomic profiling analysis of the 3035 NSCLC-BMs found that the most frequent genomic alterations (GAs) were in the TP53, KRAS, CDKN2A, STK11, CDKN2B, EGFR, NKX2-1, RB1, MYC, and KEAP1 genes. In the NSCLC-BM cohort, there were significantly higher rates of several targetable GAs compared with pNSCLC, including ALK fusions, KRAS G12C mutations, and MET amplifications; and decreased frequency of MET exon14 skipping mutations (all P < .05). In the subset of NSCLC-BM (n = 1063) where concurrent PD-L1 immunohistochemistry (IHC) was performed, 54.7% of the patients with NSCLC-BM were eligible for pembrolizumab based on PD-L1 IHC (TPS ≥ 1), and 56.9% were eligible for pembrolizumab based on TMB-High status. In addition, in a series 67 paired pNSCLC and NSCLC-BM samples, 85.1% (57/67) had at least one additional GA discovered in the NSCLC-BM sample when compared with the pNSCLC sample. CONCLUSIONS: Herein, we defined the clinicopathologic, genomic, and biomarker landscape of a large cohort of patients with NSCLC-BM which can help inform study design of future clinical studies for patients with NSCLC with BM. In certain clinical situations, metastatic NSCLC brain tissue or cerebral spinal fluid specimens may be needed to fully optimize personalized treatment.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/genetics , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Genomics , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , NF-E2-Related Factor 2/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor Protein-Tyrosine Kinases/genetics , Retrospective Studies
9.
Oncologist ; 27(8): 655-662, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35552752

ABSTRACT

BACKGROUND: In the current study, we examined the real-world prevalence of highly pigmented advanced melanomas (HPMel) and the clinicopathologic, genomic, and ICPI biomarker signatures of this class of tumors. MATERIALS AND METHODS: Our case archive of clinical melanoma samples for which the ordering physician requested testing for both PD-L1 immunohistochemistry (IHC) and comprehensive genomic profiling (CGP) was screened for HPMel cases, as well as for non-pigmented or lightly pigmented advanced melanoma cases (LPMel). RESULTS: Of the 1268 consecutive melanoma biopsies in our archive that had been submitted for PD-L1 IHC, 13.0% (165/1268) were HPMel and 87.0% (1103/1268) were LPMel. In the HPMel cohort, we saw a significantly lower tumor mutational burden (TMB, median 8.8 mutations/Mb) than in the LPMel group (11.4 mut/Mb), although there was substantial overlap. In examining characteristic secondary genomic alterations (GA), we found that the frequencies of GA in TERTp, CDKN2A, TP53, and PTEN were significantly lower in the HPMel cases than in LPMel. A higher rate of GA in CTNNB1, APC, PRKAR1A, and KIT was identified in the HPMel cohort compared with LPMel. CONCLUSIONS: In this study, we quantified the failure rates of melanoma samples for PD-L1 testing due to high melanin pigmentation and showed that CGP can be used in these patients to identify biomarkers that can guide treatment decisions for HPMel patients. Using this practical clinical definition for tumor pigmentation, our results indicate that HPMel are frequent at 13% of melanoma samples, and in general appear molecularly less developed, with a lower TMB and less frequent secondary GA of melanoma progression.


Subject(s)
B7-H1 Antigen , Melanoma , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Genomics , Humans , Melanoma/genetics , Melanoma/pathology , Mutation , Pigmentation/genetics
10.
Breast Cancer Res Treat ; 196(1): 221-227, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36028784

ABSTRACT

PURPOSE: We assessed associations between PD-L1 protein expression, RS, tumor grade, and stromal tumor-infiltrating lymphocyte (TIL) count in early-stage ER + cancers. METHODS: FFPE tissue blocks of 213 patients with RS in 2012-2017 were identified. PD-L1 immunohistochemistry was performed with SP142 assay, cases with ≥ 1% tumor-infiltrating immune cell positivity in the tumor area were considered PD-L1 + . TIL scores were determined following the international TIL counting guidelines. PD-L1 expression positivity rates were compared across RS (< 11, 11-25, > 25) and TIL categories (< 10%, 10-29%, > 30%), and tumor grade using Wilcoxon and Chi-square tests. Multivariate analysis was performed using logistic regression. RESULTS: PD-L1 and TIL results were available for 201 and 203 patients. Overall, 53% of cases were PD-L1 +. PD-L1 expression was higher among cases with RS > 25, versus RS < 11 (p = 0.00019) and RS 11-25 (p = 0.0017). PD-L1 positivity also correlated with TIL score, tumor grade, and tumor size. Among cancers with TIL > 30%, 92% were PD-L1 + versus 44% PD-L1 + among TIL < 10% (p = 2.8 × 10-6). Grade 3 cancers had higher PD-L1 positivity (79% PD-L1 +) versus grade 2 (49% PD-L1 +) or 1 tumors (48% PD-L1 +) (p = 0.00047). T2 and T3 tumors had more frequent PD-L1 positivity (67% and 83%, respectively) versus T1 cancers (46%) (p = 0.008). In multivariate analysis, only TIL and RS remained as independent predictors of PD-L1 positivity. CONCLUSION: PD-L1 expression is significantly more frequent and higher in larger tumors (T2, T3), grade 3 cancers, and in cancers with RS > 25. PD-L1 expression also correlates with TIL score.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Female , Humans , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating , Prognosis
11.
Gynecol Oncol ; 164(3): 558-565, 2022 03.
Article in English | MEDLINE | ID: mdl-34998597

ABSTRACT

OBJECTIVES: Endometrial serous carcinoma (EMSC) is an aggressive variant of uterine cancer with limited therapeutic options. We sought to define distinct clinicopathologic and genomic EMSC subgroups. METHODS: We retrospectively analyzed 2159 EMSC and 2346 endometrioid-type endometrial carcinomas (EEC) tissue specimens that had undergone comprehensive genomic profiling (CGP) via the FoundationOne CDx assay during routine clinical care. High tumor mutational burden (TMB) was defined as ≥10mut/Mb using the FDA-approved CDx cutoff for pembrolizumab. Microsatellite instability (MSI) was determined on 95 loci. Evidence of homologous recombination deficiency (HRD) was determined via genomic loss of heterozygosity (gLOH), a validated HRD detection method for predicting PARP inhibitor effectiveness in ovarian carcinoma. High gLOH was defined as ≥16%. RESULTS: A genomic analysis of 2159 EMSCs revealed a predominance of TP53 mutations, microsatellite stability, low tumor mutational burden (TMB), and recurrent alterations of PIK3CA, PPP2R1A, ERBB2, CCNE1, FBXW7 and MYC. Evidence of HRD via high gLOH was identified in 22% of EMSCs. BRCA1 and BRCA2 alterations, as well as unique SET (solid, pseudo-endometrioid, and transitional cell-like) variant morphology, were enriched in HRD-EMSC. There was an increased frequency of CCNE1 amplification, a lower prevalence of PIK3CA and PPP2R1A alterations, and no differences in HRD, MSI or TMB biomarker frequencies in patients of predicted African ancestry. EMSC exhibited distinct gene mutation frequencies and MSI, TMB and gLOH biomarker signatures compared to a cohort 2346 EEC. CONCLUSIONS: Molecularly defined subgroups provide a framework to test the susceptibility of EMSC to targeted therapies in specific genetic settings (e.g. HRD, PIK3CA, PPP2R1A, ERBB2, MYC, CCNE1).


Subject(s)
Carcinoma, Endometrioid , Cystadenocarcinoma, Serous , Endometrial Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Endometrioid/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Female , Humans , Microsatellite Instability , Mutation , Retrospective Studies
12.
Genes Dev ; 28(5): 479-90, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24589777

ABSTRACT

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.


Subject(s)
Cardiomyopathies/genetics , Glutarates/metabolism , Isocitrate Dehydrogenase/genetics , Mutation , Neurodegenerative Diseases/genetics , Animals , Cardiomyopathies/enzymology , Cardiomyopathies/pathology , Cell Line , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heart/physiopathology , Humans , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/pathology
13.
Cancer ; 127(24): 4557-4564, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34379803

ABSTRACT

BACKGROUND: This study assessed the contrasting genomic profiles from the primary tumors (PTs), metastatic (MET) sites, and circulating tumor DNA (ctDNA) of patients with prostate cancer (PC). METHODS: A total of 1294 PC tissue specimens and 2462 ctDNA specimens underwent hybrid capture-based comprehensive genomic profiling (CGP). Specimens included tissue from PTs; MET biopsies from bone, liver (LIV), lung (LU), brain (BN), lymph node, and soft tissue sites; and ctDNA. RESULTS: Differences in alteration frequencies between PT, MET, and ctDNA specimens for selected genes were observed. TMPRSS2:ERG fusion frequencies were similar between PTs and MET sites (35% vs 33%) but varied among MET sites. Genomic alterations (GAs) in AR were lowest in PTs (2%) and highest in MET sites (from 24% in LU to 50% in LIV). BN had the highest genomic alterations/tumor (8) and enrichment for PTEN GAs. The BRCA2 GA frequency varied from 0% in BN to 15% in LIV. ERBB2 amplification was increased in MET sites in comparison with PTs. RB1 GAs were increased in LIV. Biomarkers potentially associated with an anti-PD(L)1 response included CDK12 GAs (16% in LU) and a microsatellite instability-high status (29% in BN). Analyses of ctDNA featured a broad spectrum of GAs similar to those detected across MET sites. CONCLUSIONS: CGP of PTs, MET sites, and ctDNA in PC exhibited differences most likely associated with tumor progression, clonal evolution, and exposure to systemic therapies; ctDNA can also capture a broad range of potential therapeutic opportunities for patients with PC.


Subject(s)
Circulating Tumor DNA , Prostatic Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Genomics , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Male , Microsatellite Instability , Mutation , Prostatic Neoplasms/genetics
14.
Oncologist ; 26(11): 916-918, 2021 11.
Article in English | MEDLINE | ID: mdl-34309133

ABSTRACT

Familial pancreatic adenocarcinoma (PDAC) is most commonly related to inheritance of a pathogenic BRCA variant (J Med Genet 2005;42:711-719). The National Comprehensive Cancer Network recommends germline testing for patients diagnosed with PDAC and recommends platinum-based chemotherapy as the preferred initial systemic therapy for patients harboring a pathogenic BRCA germline variant with PDAC (https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455). PDACs related to pathogenic BRCA germline variants typically demonstrate BRCA loss of heterozygosity (LOH), which results in ineffective DNA damage repair due to a lack of normal BRCA gene product activity. By causing DNA damage, platinum-based therapies have been shown to be highly effective therapies (Cancer Cell 2010;18:499-509, Gen Med 2015;17:569). In contrast, platinum-based therapies would be predicted to be significantly less effective for PDACs in patients with pathogenic BRCA germline variants who have cancers that lack BRCA LOH. Poly (ADP-ribose) polymerase 1 (PARP) is also key to effective DNA repair. The Food and Drug Administration has approved PARP inhibitors for patients carrying germline pathogenic BRCA variants and metastatic breast cancer or ovarian cancer (Ann Oncol 2019;30:558-566, J Clin Oncol 2015;33:244-250). PARP inhibitors would again be expected to be far less effective in patients who carry pathogenic BRCA germline variants with breast and ovarian cancers (those that lack BRCA LOH) than in those with BRCA-related breast and ovarian cancers (which typically demonstrate BRCA LOH), because PARP is involved in DNA repair. Here, we present a patient harboring a pathogenic BRCA germline variant whose PDAC grew rapidly during platinum-based therapy and lacked BRCA LOH and therefore was not likely BRCA related. Given the molecular fingerprint of BRCA-related PDAC in patients with pathogenic BRCA germline variants and the mechanism of action of platinum-based therapies and PARP inhibitors, this case underscores the importance of future studies aimed at determining whether the lack of BRCA LOH in PDACs in pathogenic BRCA germline variant carriers is a biomarker of less responsiveness to platinum-based chemotherapy and PARP inhibitors. KEY POINTS: Platinum-based therapy or Poly (ADP-ribose) polymerase 1 (PARP) inhibitor therapies are highly effective systemic therapy options for most patients with pancreatic adenocarcinoma who carry a germline pathogenic BRCA variant. In the case presented here, a patient carrying a germline pathogenic BRCA variant saw rapid progression of his pancreatic adenocarcinoma while on platinum-based therapy. Next-generation sequencing confirmed that his pancreatic cancer was likely not related to BRCA loss of heterozygosity (LOH). Studies are needed to determine, in patients who harbor germline pathogenic BRCA variants, whether similar cancers (i.e., those that lack BRCA LOH) are less responsive to platinum-based or PARP inhibitor therapies than are those more common BRCA-related cancers (i.e., those that demonstrate LOH).


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Platinum/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , BRCA2 Protein/genetics , Disease Progression , Germ-Line Mutation , Humans , Neoplasm Metastasis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , United States
15.
Oncologist ; 26(5): 375-382, 2021 05.
Article in English | MEDLINE | ID: mdl-33687775

ABSTRACT

INTRODUCTION: Pembrolizumab was approved with an accompanying companion diagnostic (CDx) assay (PD-L1 DAKO 22C3) for urothelial carcinoma (UC). In this study, we further characterize the clinicopathologic and genomic features of UC that are programmed death-ligand 1 (PD-L1) positive. MATERIALS AND METHODS: The cohort of this study consisted of a total of 528 consecutive UC patients with PD-L1 immunohistochemistry (IHC) and comprehensive genomic profiling (CGP). All PD-L1 IHC testing was performed using the DAKO 22C3 CDx assay for UC. PD-L1 positivity was determined at a combined positive score ≥ 10. RESULTS: A total of 44.5% (235/528) patients with UC were PD-L1positive . A lower PD-L1 positivity rate was detected in primary (42.3%, 148/350) versus metastatic sites (48.9%, 87/178). PD-L1 positivity was dependent on the location of the metastatic sites. CGP revealed PD-L1positive patients had more frequent genomic alterations (GAs) in TP53 (p = .006) and RB1 (p = .003) and less frequent GAs in FGFR3 (p = .001) and MTAP (p = .028). The APOBEC mutational signature and tumor mutational burden (TMB)-high were more common in PD-L1positive patients. By testing patients with UC with CGP, in addition to PD-L1 IHC, an additional 97 patients (18.4%) in the total cohort were eligible for immunotherapy based on TMB status. CONCLUSION: PD-L1positive and PD-L1negative urothelial carcinomas are genomically different. Also, our study provides the framework for future clinical investigation with regard to specimen site selection for PD-L1 testing as well as candidate biomarker genomic alterations that may predict for better response or lack of response to immune checkpoint inhibitors. IMPLICATIONS FOR PRACTICE: In this study, a higher prevalence of TP53 and RB1 alterations and APOBEC mutational signatures in the PD-L1positive urothelial carcinoma disease subset and enrichment of FGFR3 alterations in the PD-L1negative disease subset were found. These data provide the basis for future investigation into the role of these genomic changes as positive and negative predictors of immunotherapy response. Also, differences wer seen in PD-L1 positivity based on the collection site of the sample, which can provide a framework for future clinical trial design and could influence sample selection for PD-L1 testing in patients with urothelial carcinoma when multiple samples are available.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Genomics , Humans , Immunohistochemistry
16.
Oncologist ; 26(1): e153-e163, 2021 01.
Article in English | MEDLINE | ID: mdl-32918774

ABSTRACT

RAF family protein kinases signal through the MAPK pathway to orchestrate cellular proliferation, survival, and transformation. Identifying BRAF alterations in pediatric cancers is critically important as therapeutic agents targeting BRAF or MEK may be incorporated into the clinical management of these patients. In this study, we performed comprehensive genomic profiling on 3,633 pediatric cancer samples and identified a cohort of 221 (6.1%) cases with known or novel alterations in BRAF or RAF1 detected in extracranial solid tumors, brain tumors, or hematological malignancies. Eighty percent (176/221) of these tumors had a known-activating short variant (98, 55.7%), fusion (72, 40.9%), or insertion/deletion (6, 3.4%). Among BRAF altered cancers, the most common tumor types were brain tumors (74.4%), solid tumors (10.8%), hematological malignancies (9.1%), sarcomas (3.4%), and extracranial embryonal tumors (2.3%). RAF1 fusions containing intact RAF1 kinase domain (encoded by exons 10-17) were identified in seven tumors, including two novel fusions TMF1-RAF1 and SOX6-RAF1. Additionally, we highlight a subset of patients with brain tumor with positive clinical response to BRAF inhibitors, demonstrating the rationale for incorporating precision medicine into pediatric oncology. IMPLICATIONS FOR PRACTICE: Precision medicine has not yet gained a strong foothold in pediatric cancers. This study describes the landscape of BRAF and RAF1 genomic alterations across a diverse spectrum of pediatric cancers, primarily brain tumors, but also encompassing melanoma, sarcoma, several types of hematologic malignancy, and others. Given the availability of multiple U.S. Food and Drug Administration-approved BRAF inhibitors, identification of these alterations may assist with treatment decision making, as described here in three cases of pediatric cancer.


Subject(s)
Brain Neoplasms , Melanoma , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins c-raf/genetics , Sarcoma , Soft Tissue Neoplasms , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Child , Humans , Mutation , Proto-Oncogene Mas , Proto-Oncogene Proteins B-raf/genetics
17.
Oncologist ; 26(7): e1263-e1272, 2021 07.
Article in English | MEDLINE | ID: mdl-33904632

ABSTRACT

BACKGROUND: Histiocytic and dendritic cell neoplasms are a diverse group of tumors arising from monocytic or dendritic cell lineage. Whereas the genomic features for Langerhans cell histiocytosis and Erdheim-Chester disease have been well described, other less common and often aggressive tumors in this broad category remain poorly characterized, and comparison studies across the World Health Organization diagnostic categories are lacking. METHODS: Tumor samples from a total of 102 patient cases within four major subtypes of malignant histiocytic and dendritic cell neoplasms, including 44 follicular dendritic cell sarcomas (FDCSs), 41 histiocytic sarcomas (HSs), 7 interdigitating dendritic cell sarcomas (IDCSs), and 10 Langerhans cell sarcomas (LCSs), underwent hybridization capture with analysis of up to 406 cancer-related genes. RESULTS: Among the entire cohort of 102 patients, CDKN2A mutations were most frequent across subtypes and made up 32% of cases, followed by TP53 mutations (22%). Mitogen-activated protein kinase (MAPK) pathway mutations were present and enriched among the malignant histiocytosis (M) group (HS, IDCS, and LCS) but absent in FDCS (72% vs. 0%; p < .0001). In contrast, NF-κB pathway mutations were frequent in FDCSs but rare in M group histiocytoses (61% vs. 12%; p < .0001). Tumor mutational burden was significantly higher in M group histiocytoses as compared with FDCSs (median 4.0/Mb vs. 2.4/Mb; p = .012). We also describe a pediatric patient with recurrent secondary histiocytic sarcoma treated with targeted therapy and interrogated by molecular analysis to identify mechanisms of therapeutic resistance. CONCLUSION: A total of 42 patient tumors (41%) harbored pathogenic mutations that were potentially targetable by approved and/or investigative therapies. Our findings highlight the potential value of molecular testing to enable precise tumor classification, identify candidate oncogenic drivers, and define personalized therapeutic options for patients with these aggressive tumors. IMPLICATIONS FOR PRACTICE: This study presents comprehensive genomic profiling results on 102 patient cases within four major subtypes of malignant histiocytic and dendritic cell neoplasms, including 44 follicular dendritic cell sarcomas (FDCSs), 41 histiocytic sarcomas (HSs), 7 interdigitating dendritic cell sarcomas (IDCSs), and 10 Langerhans cell sarcomas (LCSs). MAPK pathway mutations were present and enriched among the malignant histiocytosis (M) group (HS, IDCS, and LCS) but absent in FDCSs. In contrast, NF-κB pathway mutations were frequent in FDCSs but rare in M group histiocytosis. A total of 42 patient tumors (41%) harbored pathogenic mutations that were potentially targetable by approved and/or investigative therapies.


Subject(s)
Dendritic Cell Sarcoma, Follicular , Hematopoietic Stem Cell Transplantation , Sarcoma , Child , Dendritic Cell Sarcoma, Follicular/genetics , Dendritic Cells , Genomics , Humans , Mutation , Neoplasm Recurrence, Local , Sarcoma/genetics
18.
Oncologist ; 26(10): 835-844, 2021 10.
Article in English | MEDLINE | ID: mdl-34105210

ABSTRACT

BACKGROUND: Among patients with breast carcinoma who have metastatic disease, 15%-30% will eventually develop brain metastases. We examined the genomic landscape of a large cohort of patients with breast carcinoma brain metastases (BCBMs) and compared it with a cohort of patients with primary breast carcinomas (BCs). MATERIAL AND METHODS: We retrospectively analyzed 733 BCBMs tested with comprehensive genomic profiling (CGP) and compared them with 10,772 primary breast carcinomas (not-paired) specimens. For a subset of 16 triple-negative breast carcinoma (TNBC)-brain metastasis samples, programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) was performed concurrently. RESULTS: A total of 733 consecutive BCBMs were analyzed. Compared with primary BCs, BCBMs were enriched for genomic alterations in TP53 (72.0%, 528/733), ERBB2 (25.6%, 188/733), RAD21 (14.1%, 103/733), NF1 (9.0%, 66/733), BRCA1 (7.8%, 57/733), and ESR1 (6.3%,46/733) (p < .05 for all comparisons). Immune checkpoint inhibitor biomarkers such as high tumor mutational burden (TMB-high; 16.2%, 119/733); high microsatellite instability (1.9%, 14/733); CD274 amplification (3.6%, 27/733); and apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like mutational signature (5.9%, 43/733) were significantly higher in the BCBM cohort compared with the primary BC cohort (p < .05 for all comparisons). When using both CGP and PD-L1 IHC, 37.5% (6/16) of patients with TNBC brain metastasis were eligible for atezolizumab based on PD-L1 IHC, and 18.8% (3/16) were eligible for pembrolizumab based on TMB-high status. CONCLUSION: We found a high prevalence of clinically relevant genomic alterations in patients with BCBM, suggesting that tissue acquisition (surgery) and/or cerebrospinal fluid for CGP in addition to CGP of the primary tumor may be clinically warranted. IMPLICATIONS FOR PRACTICE: This study found a high prevalence of clinically relevant genomic alterations in patients with breast carcinoma brain metastasis (BCBM), suggesting that tissue acquisition (surgery) and/or cerebrospinal fluid for comprehensive genomic profiling (CGP) in addition to CGP of the primary tumor may be clinically warranted. In addition, this study identified higher positive rates for FDA-approved immunotherapy biomarkers detected by CGP in patients with BCBM, opening a possibility of new on-label treatments. Last, this study noted limited correlation between tumor mutational burden and PD-L1 immunohistochemistry (IHC), which shows the importance of testing patients with triple-negative BCBM for immune checkpoint inhibitor eligibility with both PD-L1 IHC and CGP.


Subject(s)
Brain Neoplasms , Triple Negative Breast Neoplasms , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Genomics , Humans , Retrospective Studies
19.
Mod Pathol ; 34(5): 983-993, 2021 05.
Article in English | MEDLINE | ID: mdl-33077920

ABSTRACT

Malignant Brenner tumor is a rare primary ovarian carcinoma subtype that may present diagnostic and therapeutic conundrums. Here, we characterize the genomics of 11 malignant Brenner tumors, which represented 0.1% of 14,153 clinically advanced ovarian carcinomas submitted for genomic profiling during the course of clinical care. At the time of molecular profiling, there was no evidence of a primary urothelial carcinoma of the urinary tract in any case. Cases with transitional-like morphologic features in the setting of variant ovarian serous or endometrioid carcinoma morphology were excluded from the final cohort. Malignant Brenner tumors exhibited CDKN2A/2B loss and oncogenic FGFR1/3 genomic alterations in 55% of cases, respectively; including recurrent FGFR3 S249C or FGFR3-TACC3 fusion in 45% of cases. FGFR3-mutated cases had an associated benign or borderline Brenner tumor pre-cursor components, further confirming the diagnosis and the ovarian site of origin. Malignant Brenner tumors were microsatellite stable, had low tumor mutational burden and exhibited no evidence of homologous recombination deficiency. PIK3CA mutations were enriched with FGFR3 alterations, while FGFR3 wild-type cases featured MDM2 amplification or TP53 mutations. The FGFR3 S249C short variant mutation was absent in 14,142 non-Brenner, ovarian carcinomas subtypes. In contrast to malignant Brenner tumors, FGFR1/2/3 alterations were present in ~5% of non-Brenner, ovarian serous, clear cell and endometrioid carcinoma subtypes, most often as FGFR1 amplification in serous carcinoma or FGFR2 short variant alterations in clear cell or endometrioid carcinomas, respectively. Finally, malignant Brenner tumors had overall distinct genomic signatures compared to FGFR-mutated ovarian serous, endometrioid, and clear cell carcinoma subtypes. This study provides insights into the molecular pathogenesis of malignant Brenner tumors, contrasts the extent of FGFR1/2/3 alterations in ovarian serous, clear cell and endometrioid carcinomas and emphasizes the potential value of novel and FDA-approved, anti-FGFR inhibitors, such as erdafitinib and pemigatinib, in refractory, FGFR3-mutated malignant Brenner tumors.


Subject(s)
Brenner Tumor/genetics , Mutation , Ovarian Neoplasms/genetics , Ovary/pathology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Brenner Tumor/pathology , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Cystadenocarcinoma, Serous/pathology , Female , Gene Expression Profiling , Humans , Middle Aged , Ovarian Neoplasms/pathology
20.
Mod Pathol ; 34(12): 2200-2210, 2021 12.
Article in English | MEDLINE | ID: mdl-34302054

ABSTRACT

BCORL1 is a transcriptional corepressor homologous to BCOR. We describe 12 BCORL1-altered uterine sarcomas with striking resemblance to BCOR-altered endometrial stromal sarcoma (BCOR-ESS), including 5 with BCORL1 rearrangements (JAZF1-BCORL1, EP300-BCORL1, or internal BCORL1 rearrangement), 5 with inactivating BCORL1 mutations (T513fs*22, P600fs*1, R945*, R1196*, or R1265fs*4) and 2 with homozygous BCORL1 deletion. The median patient age was 57.5 years (range 33-79). An association with aggressive clinical behavior was identified. Diagnoses assigned prior to genomic testing varied: 7 tumors were previously diagnosed as ESS, 2 as high-grade uterine sarcomas, 2 as myxoid uterine leiomyosarcomas, and 1 as a uterine spindle cell neoplasm consistent with leiomyosarcoma. Tumors harbored frequent gelatinous, mucomyxoid-like appearance by gross examination and unique histology with morphological overlap with BCOR-ESS. Key microscopic features included (1) a spindle cell appearance, most often with at least focal myxoid stroma, (2) variable amounts of hypocellular fibromyxoid spindle areas with lower grade atypia and/or (3) variable amounts of epithelioid areas with higher grade atypia. Specifically, spindle and epithelioid components were present in 100 and 75% of sarcomas, respectively; myxoid stroma was identified in 83%, collagen plaques or fibrosis in 50%, and high-grade nuclear atypia was present in 42%. Like BCOR-ESS, 50% of BCORL1-altered sarcomas exhibited CDK4 amplification or CDKN2A loss. In contrast, 33% harbored NF1 alterations, while 25% had other alterations in the NF2-mTOR pathway, expanding potential therapeutic targets. In conclusion, inactivating BCORL1 genomic alterations may define a distinct subset of high-grade endometrial stromal sarcomas with biological overlap with BCOR-ESS, both of which may mimic myxoid leiomyosarcomas.


Subject(s)
Biomarkers, Tumor/genetics , Endometrial Neoplasms/genetics , Repressor Proteins/genetics , Sarcoma, Endometrial Stromal/genetics , Adult , Aged , Databases, Factual , Endometrial Neoplasms/pathology , Female , Gene Amplification , Gene Rearrangement , Genetic Predisposition to Disease , Humans , Middle Aged , Molecular Diagnostic Techniques , Mutation , Neoplasm Grading , Phenotype , Predictive Value of Tests , Retrospective Studies , Sarcoma, Endometrial Stromal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL