Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Arterioscler Thromb Vasc Biol ; 41(2): 755-768, 2021 02.
Article in English | MEDLINE | ID: mdl-33356393

ABSTRACT

OBJECTIVE: Vascular calcification is a critical pathology associated with increased cardiovascular event risk, but there are no Food and Drug Administration-approved anticalcific therapies. We hypothesized and validated that an unbiased screening approach would identify novel mediators of human vascular calcification. Approach and Results: We performed an unbiased quantitative proteomics and pathway network analysis that identified increased CROT (carnitine O-octanoyltransferase) in calcifying primary human coronary artery smooth muscle cells (SMCs). Additionally, human carotid artery atherosclerotic plaques contained increased immunoreactive CROT near calcified regions. CROT siRNA reduced fibrocalcific response in calcifying SMCs. In agreement, histidine 327 to alanine point mutation inactivated human CROT fatty acid metabolism enzymatic activity and suppressed SMC calcification. CROT siRNA suppressed type 1 collagen secretion, and restored mitochondrial proteome alterations, and suppressed mitochondrial fragmentation in calcifying SMCs. Lipidomics analysis of SMCs incubated with CROT siRNA revealed increased eicosapentaenoic acid, a vascular calcification inhibitor. CRISPR/Cas9-mediated Crot deficiency in LDL (low-density lipoprotein) receptor-deficient mice reduced aortic and carotid artery calcification without altering bone density or liver and plasma cholesterol and triglyceride concentrations. CONCLUSIONS: CROT is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction, as such CROT inhibition has strong potential as an antifibrocalcific therapy.


Subject(s)
Atherosclerosis/enzymology , Carnitine Acyltransferases/metabolism , Energy Metabolism , Fatty Acids/metabolism , Mitochondria/enzymology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Vascular Calcification/enzymology , Adult , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Carnitine Acyltransferases/genetics , Cells, Cultured , Disease Models, Animal , Female , Fibrosis , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Mitochondria/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Osteogenesis , Proteome , Proteomics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , Vascular Calcification/genetics , Vascular Calcification/pathology , Vascular Calcification/prevention & control
2.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33351780

ABSTRACT

Recent in vivo tracer studies demonstrated that targeted mass spectrometry (MS) on the Q Exactive Orbitrap could determine the metabolism of HDL proteins 100s-fold less abundant than apolipoprotein A1 (APOA1). In this study, we demonstrate that the Orbitrap Lumos can measure tracer in proteins whose abundances are 1000s-fold less than APOA1, specifically the lipid transfer proteins phospholipid transfer protein (PLTP), cholesterol ester transfer protein (CETP), and lecithin-cholesterol acyl transferase (LCAT). Relative to the Q Exactive, the Lumos improved tracer detection by reducing tracer enrichment compression, thereby providing consistent enrichment data across multiple HDL sizes from 6 participants. We determined by compartmental modeling that PLTP is secreted in medium and large HDL (alpha2, alpha1, and alpha0) and is transferred from medium to larger sizes during circulation from where it is catabolized. CETP is secreted mainly in alpha1 and alpha2 and remains in these sizes during circulation. LCAT is secreted mainly in medium and small HDL (alpha2, alpha3, prebeta). Unlike PLTP and CETP, LCAT's appearance on HDL is markedly delayed, indicating that LCAT may reside for a time outside of systemic circulation before attaching to HDL in plasma. The determination of these lipid transfer proteins' unique metabolic structures was possible due to advances in MS technologies.


Subject(s)
Cholesterol Ester Transfer Proteins/blood , Lipoproteins, HDL/blood , Mass Spectrometry/methods , Phosphatidylcholine-Sterol O-Acyltransferase/blood , Phospholipid Transfer Proteins/blood , Blood Chemical Analysis/instrumentation , Blood Chemical Analysis/methods , Deuterium/analysis , Deuterium/blood , Female , Humans , Kinetics , Lipoproteins, HDL/chemistry , Male , Mass Spectrometry/instrumentation , Models, Biological , Molecular Weight , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL