Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Antimicrob Agents Chemother ; 66(5): e0020422, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35467369

ABSTRACT

The rise of antimicrobial-resistant (AMR) bacteria is a global health emergency. One critical facet of tackling this epidemic is more rapid AMR diagnosis in serious multidrug-resistant pathogens like Pseudomonas aeruginosa. Here, we designed and then validated two multiplex quantitative real-time PCR (qPCR) assays to simultaneously detect differential expression of the resistance-nodulation-division efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM, the AmpC ß-lactamase, and the porin OprD, which are commonly associated with chromosomally encoded AMR. Next, qPCRs were tested on 15 sputa from 11 participants with P. aeruginosa respiratory infections to determine AMR profiles in vivo. We confirmed multiplex qPCR testing feasibility directly on sputa, representing a key advancement in in vivo AMR diagnosis. Notably, comparison of sputa with their derived isolates grown in Luria-Bertani broth (±2.5% NaCl) or a 5-antibiotic cocktail showed marked expression differences, illustrating the difficulty in replicating in vivo expression profiles in vitro. Cystic fibrosis sputa showed significantly reduced mexE and mexY expression compared with chronic obstructive pulmonary disease sputa, despite harboring fluoroquinolone- and aminoglycoside-resistant strains, indicating that these loci do not contribute to AMR in vivo. oprD was also significantly downregulated in cystic fibrosis sputa, even in the absence of contemporaneous carbapenem use, suggesting a common adaptive trait in chronic infections that may affect carbapenem efficacy. Sputum ampC expression was highest in participants receiving carbapenems (6.7 to 15×), some of whom were simultaneously receiving cephalosporins, the latter of which would be rendered ineffective by the upregulated ampC. Our qPCR assays provide valuable insights into the P. aeruginosa resistome, and their use on clinical specimens will permit timely treatment alterations that will improve patient outcomes and antimicrobial stewardship measures.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Anti-Bacterial Agents/therapeutic use , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/therapeutic use , Cystic Fibrosis/complications , Drug Resistance, Bacterial , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Real-Time Polymerase Chain Reaction
2.
Thorax ; 74(1): 87-90, 2019 01.
Article in English | MEDLINE | ID: mdl-29627800

ABSTRACT

The airborne route is a potential pathway in the person-to-person transmission of bacterial strains among cystic fibrosis (CF) populations. In this cross-sectional study, we investigate the physical properties and survival of common non-Pseudomonas aeruginosa CF pathogens generated during coughing. We conclude that Gram-negative bacteria and Staphylococcus aureus are aerosolised during coughing, can travel up to 4 m and remain viable within droplet nuclei for up to 45 min. These results suggest that airborne person-to-person transmission is plausible for the CF pathogens we measured.


Subject(s)
Cystic Fibrosis/microbiology , Gram-Negative Bacterial Infections/transmission , Staphylococcal Infections/transmission , Staphylococcus aureus/growth & development , Achromobacter/isolation & purification , Adult , Aerosols , Burkholderia/isolation & purification , Colony Count, Microbial , Cough/microbiology , Cross-Sectional Studies , Female , Gram-Negative Bacterial Infections/microbiology , Humans , Male , Pseudomonas Infections/transmission , Pseudomonas aeruginosa/growth & development , Sputum/microbiology , Staphylococcus aureus/isolation & purification , Stenotrophomonas maltophilia/isolation & purification , Time Factors , Young Adult
3.
Respirology ; 24(10): 980-987, 2019 10.
Article in English | MEDLINE | ID: mdl-30919511

ABSTRACT

BACKGROUND AND OBJECTIVE: Aerosol transmission of Pseudomonas aeruginosa has been suggested as a possible mode of respiratory infection spread in patients with cystic fibrosis (CF); however, whether this occurs in other suppurative lung diseases is unknown. Therefore, we aimed to determine if (i) patients with bronchiectasis (unrelated to CF) or chronic obstructive pulmonary disease (COPD) can aerosolize P. aeruginosa during coughing and (ii) if genetically indistinguishable (shared) P. aeruginosa strains are present in these disease cohorts. METHODS: People with bronchiectasis or COPD and P. aeruginosa respiratory infection were recruited for two studies. Aerosol study: Participants (n = 20) underwent cough testing using validated cough rigs to determine the survival of P. aeruginosa aerosols in the air over distance and duration. Genotyping study: P. aeruginosa sputum isolates (n = 95) were genotyped using the iPLEX20SNP platform, with a subset subjected to the enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) assay to ascertain their genetic relatedness. RESULTS: Aerosol study: Overall, 7 of 20 (35%) participants released P. aeruginosa cough aerosols during at least one of the cough aerosol tests. These cough aerosols remained viable for 4 m from the source and for 15 min after coughing. The mean total aerosol count of P. aeruginosa at 2 m was two colony-forming units. Typing study: No shared P. aeruginosa strains were identified. CONCLUSION: Low viable count of P. aeruginosa cough aerosols and a lack of shared P. aeruginosa strains observed suggest that aerosol transmission of P. aeruginosa is an unlikely mode of respiratory infection spread in patients with bronchiectasis and COPD.


Subject(s)
Aerosols , Bronchiectasis/complications , Cough/microbiology , Pseudomonas Infections/complications , Pseudomonas aeruginosa , Pulmonary Disease, Chronic Obstructive/complications , Aged , Colony Count, Microbial , Cough/etiology , Female , Genotype , Humans , Male , Middle Aged , Phylogeny , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Sputum/microbiology
4.
Am J Respir Crit Care Med ; 197(3): 348-355, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28930641

ABSTRACT

RATIONALE: People with cystic fibrosis (CF) generate Pseudomonas aeruginosa in droplet nuclei during coughing. The use of surgical masks has been recommended in healthcare settings to minimize pathogen transmission between patients with CF. OBJECTIVES: To determine if face masks and cough etiquette reduce viable P. aeruginosa aerosolized during coughing. METHODS: Twenty-five adults with CF and chronic P. aeruginosa infection were recruited. Participants performed six talking and coughing maneuvers, with or without face masks (surgical and N95) and hand covering the mouth when coughing (cough etiquette) in an aerosol-sampling device. An Andersen Cascade Impactor was used to sample the aerosol at 2 meters from each participant. Quantitative sputum and aerosol bacterial cultures were performed, and participants rated the mask comfort levels during the cough maneuvers. MEASUREMENTS AND MAIN RESULTS: During uncovered coughing (reference maneuver), 19 of 25 (76%) participants produced aerosols containing P. aeruginosa, with a positive correlation found between sputum P. aeruginosa concentration (measured as cfu/ml) and aerosol P. aeruginosa colony-forming units. There was a reduction in aerosol P. aeruginosa load during coughing with a surgical mask, coughing with an N95 mask, and cough etiquette compared with uncovered coughing (P < 0.001). A similar reduction in total colony-forming units was observed for both masks during coughing; yet, participants rated the surgical masks as more comfortable (P = 0.013). Cough etiquette provided approximately half the reduction of viable aerosols of the mask interventions during voluntary coughing. Talking was a low viable aerosol-producing activity. CONCLUSIONS: Face masks reduce cough-generated P. aeruginosa aerosols, with the surgical mask providing enhanced comfort. Cough etiquette was less effective at reducing viable aerosols.


Subject(s)
Cough/microbiology , Cystic Fibrosis/microbiology , Inhalation Exposure/prevention & control , Masks , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/isolation & purification , Adult , Australia , Cohort Studies , Disease Transmission, Infectious/prevention & control , Female , Humans , Male , Pseudomonas Infections/transmission , Reference Values
5.
BMC Genomics ; 19(1): 644, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30165811

ABSTRACT

BACKGROUND: Chronic lung infections caused by Pseudomonas aeruginosa are a significant cause of morbidity and mortality in people with cystic fibrosis (CF). Shared P. aeruginosa strains, that can be transmitted between patients, are of concern and in Australia the AUST-02 shared strain is predominant in individuals attending CF centres in Queensland and Western Australia. M3L7 is a multidrug resistant sub-type of AUST-02 that was recently identified in a Queensland CF centre and was shown to be associated with poorer clinical outcomes. The main aim of this study was to resolve the relationship of the emergent M3L7 sub-type within the AUST-02 group of strains using whole genome sequencing. RESULTS: A whole genome core phylogeny of 63 isolates indicated that M3L7 is a monophyletic sub-lineage within the context of the broader AUST-02 group. Relatively short branch lengths connected all of the M3L7 isolates. A phylogeny based on nucleotide polymorphisms present across the genome showed that the chronological estimation of the most recent common ancestor was around 2001 (± 3 years). SNP differences between sequential non-hypermutator M3L7 isolates collected 3-4 years apart from five patients suggested both continuous infection of the same strain and cross-infection of some M3L7 variants between patients. The majority of polymorphisms that were characteristic of M3L7 (i.e. acquired after divergence from all other AUST-02 isolates sequenced) were found to produce non-synonymous mutations in virulence and antibiotic resistance genes. CONCLUSIONS: M3L7 has recently diverged from a common ancestor, indicating descent from a single carrier at a CF treatment centre in Australia. Both adaptation to the lung and transmission of M3L7 between adults attending this centre may have contributed to its rapid dissemination. Further genomic investigations are required on multiple intra-sample isolates of this sub-type to decipher potential mechanisms which facilitates its epidemiological success.


Subject(s)
Cystic Fibrosis/complications , Pseudomonas Infections/microbiology , Pseudomonas Infections/transmission , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/isolation & purification , Adult , Cystic Fibrosis/microbiology , Genetic Variation , Genotype , Humans , Phylogeny , Pseudomonas aeruginosa/genetics , Whole Genome Sequencing
6.
Article in English | MEDLINE | ID: mdl-30201819

ABSTRACT

The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC ß-lactamase that degrades ß-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation.


Subject(s)
Cystic Fibrosis/microbiology , Drug Resistance, Microbial/genetics , Pseudomonas aeruginosa/genetics , Adolescent , Adult , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Child , Cystic Fibrosis/drug therapy , Female , Humans , Male , Microbial Sensitivity Tests/methods , Middle Aged , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Sputum/microbiology , Young Adult , beta-Lactamases/genetics
7.
BMC Pulm Med ; 17(1): 138, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29096618

ABSTRACT

BACKGROUND: Pulmonary exacerbations in cystic fibrosis (CF) remain poorly understood and treatment is usually targeted at Pseudomonas aeruginosa. Within Australia a predominant shared P. aeruginosa strain (AUST-02) is associated with greater treatment needs. This single centre study assessed temporal shared strain population dynamics during and after antibiotic treatment of exacerbations. METHODS: Sputum was collected from 12 adult patients with a history of chronic AUST-02 infection at four time-points during and after treatment of an exacerbation. Forty-eight P. aeruginosa isolates within each sample underwent AUST-02 allele-specific PCR and SNP-based strain genotyping. RESULTS: Various commonly shared Australian strains (AUST-01, 0.1%; AUST-02, 54.3%; AUST-06, 36.6%; AUST-07, 4.6%; AUST-11, 4.3%) and two unique strains (0.1%) were identified from 45 sputum samples (2160 isolates). Based on within-patient relative abundance of strains, a "single-strain infection" (n = 7) or "mixed-strain infection" (n = 5) was assigned to each patient. A significant temporal variation in the P. aeruginosa population composition was found for those with mixed-strain infection (P < 0.001). Patients with mixed-strain infections had more long-term treatment requirements than those with single-strain infection. Moreover, despite both groups having similar lung function at study entry, patients with single-strain infection had greater improvement in FEV1% predicted following their exacerbation treatment (P = 0.02). CONCLUSION: Pulmonary exacerbations may reveal multiple, unrelated P. aeruginosa strains whose relative abundance with one another may change rapidly, in a sustained and unpredictable manner.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Adult , Disease Progression , Female , Forced Expiratory Volume , Genotype , Humans , Male , Middle Aged , Phenotype , Population Dynamics , Pseudomonas Infections/physiopathology , Pseudomonas aeruginosa/isolation & purification , Respiratory Tract Infections/physiopathology , Sputum/microbiology , Time Factors
8.
Respirology ; 21(2): 329-37, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26711802

ABSTRACT

BACKGROUND AND OBJECTIVE: In cystic fibrosis (CF), chronic Pseudomonas aeruginosa infection is associated with increased morbidity, antibiotic treatments and mortality. By linking Australian CF registry data with a national microbiological data set, we examined the association between where treatment was delivered, its intensity and P. aeruginosa antibiotic resistance. METHODS: Sputa were collected from paediatric and adult CF patients attending 18 Australian CF centres. P. aeruginosa antibiotic susceptibilities determined by local laboratories were correlated with clinical characteristics, treatment intensity and infection with strains commonly shared among Australian CF patients. Between-centre differences in treatment and antibiotic resistance were also compared. RESULTS: Large variations in antibiotic usage, maintenance treatment practices and multi-antibiotic resistant P. aeruginosa (MARPA) prevalence exist between Australian CF centres, although the overall proportions of MARPA isolates were similar in paediatric and adult centres (31% vs 35%, P = 0.29). Among paediatric centres, MARPA correlated with intravenous antibiotic usage and the Australian state where treatment was delivered, while azithromycin, reduced lung function and treating state predicted intravenous antibiotic usage. In adult centres, body mass index (BMI) and treating state were associated with MARPA, while intravenous antibiotic use was predicted by gender, BMI, dornase-alpha, azithromycin, lung function and treating state. In adults, P. aeruginosa strains AUST-01 and AUST-02 independently predicted intravenous antibiotic usage. CONCLUSION: Increased treatment intensity in paediatric centres and the Australian state where treatment was received are both associated with greater risk of MARPA, but not worse clinical outcomes.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Drug Resistance, Multiple, Bacterial , Health Facilities , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Administration, Intravenous , Adult , Anti-Bacterial Agents/administration & dosage , Australia , Azithromycin/therapeutic use , Body Mass Index , Child , Cystic Fibrosis/physiopathology , Drug Utilization , Female , Humans , Male , Microbial Sensitivity Tests , Practice Patterns, Physicians' , Registries , Respiratory Function Tests , Sex Factors , Sputum/microbiology
9.
BMC Pulm Med ; 16(1): 78, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27170040

ABSTRACT

BACKGROUND: People with cystic fibrosis (CF) may work in healthcare settings risking nosocomial pathogen acquisition. The aim of this study was to determine the incidence of methicillin-resistant Staphylococcus aureus (MRSA) infection in adult healthcare workers with CF (HCWcf). METHODS: Data was collected in this observational study on MRSA acquisition from 405 CF patients attending an adult CF centre in Australia between 2001-2012. Demographic and clinical characteristics were compared between HCWcf and non-HCWcf. A sub-analysis was subsequently performed to compare demographic and clinical characteristics between those patients (HCWcf versus non-HCWcf) that acquired MRSA. We also investigated rates of chronic MRSA infection and the outcome of eradication treatment in HCWcf. RESULTS: A higher proportion of HCWcf acquired MRSA [n = 10/21] compared to non-HCWcf [n = 40/255] (P <0.001). The odds of MRSA acquisition were 8.4 (95 % CI, 3.0 - 23.4) times greater in HCWcf than non-HCWcf. HCWcf with MRSA were older (P = 0.02) and had better lung function (P = 0.009), yet hospitalisation rates were similar compared to non-HCWcf with MRSA. Chronic MRSA infection developed in 36/50 CF patients (HCWcf, n = 6; non-HCWcf, n = 30), with eradication therapy achieved in 5/6 (83 %) HCWcf. CONCLUSIONS: The rate of MRSA incidence was highest in HCWcf and the workplace is a possible source of acquisition. Vocational guidance should include the potential for MRSA acquisition for CF patients considering healthcare professions.


Subject(s)
Cross Infection/drug therapy , Cross Infection/epidemiology , Cystic Fibrosis/complications , Health Personnel , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Adult , Anti-Bacterial Agents/therapeutic use , Australia , Cross-Sectional Studies , Female , Fusidic Acid/therapeutic use , Humans , Incidence , Linezolid/therapeutic use , Logistic Models , Male , Multivariate Analysis , Retrospective Studies , Rifampin/therapeutic use , Treatment Outcome , Young Adult
10.
Thorax ; 69(8): 740-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24743559

ABSTRACT

BACKGROUND: Person-to-person transmission of respiratory pathogens, including Pseudomonas aeruginosa, is a challenge facing many cystic fibrosis (CF) centres. Viable P aeruginosa are contained in aerosols produced during coughing, raising the possibility of airborne transmission. METHODS: Using purpose-built equipment, we measured viable P aeruginosa in cough aerosols at 1, 2 and 4 m from the subject (distance) and after allowing aerosols to age for 5, 15 and 45 min in a slowly rotating drum to minimise gravitational settling and inertial impaction (duration). Aerosol particles were captured and sized employing an Anderson Impactor and cultured using conventional microbiology. Sputum was also cultured and lung function and respiratory muscle strength measured. RESULTS: Nineteen patients with CF, mean age 25.8 (SD 9.2) years, chronically infected with P aeruginosa, and 10 healthy controls, 26.5 (8.7) years, participated. Viable P aeruginosa were detected in cough aerosols from all patients with CF, but not from controls; travelling 4 m in 17/18 (94%) and persisting for 45 min in 14/18 (78%) of the CF group. Marked inter-subject heterogeneity of P aeruginosa aerosol colony counts was seen and correlated strongly (r=0.73-0.90) with sputum bacterial loads. Modelling decay of viable P aeruginosa in a clinic room suggested that at the recommended ventilation rate of two air changes per hour almost 50 min were required for 90% to be removed after an infected patient left the room. CONCLUSIONS: Viable P aeruginosa in cough aerosols travel further and last longer than recognised previously, providing additional evidence of airborne transmission between patients with CF.


Subject(s)
Cough/microbiology , Cystic Fibrosis/microbiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/transmission , Pseudomonas aeruginosa/isolation & purification , Adolescent , Adult , Aerosols , Case-Control Studies , Female , Humans , Inhalation Exposure , Male , Respiratory Function Tests , Sputum/microbiology
11.
BMC Infect Dis ; 14: 307, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24902856

ABSTRACT

BACKGROUND: Molecular typing is integral for identifying Pseudomonas aeruginosa strains that may be shared between patients with cystic fibrosis (CF). We conducted a side-by-side comparison of two P. aeruginosa genotyping methods utilising informative-single nucleotide polymorphism (SNP) methods; one targeting 10 P. aeruginosa SNPs and using real-time polymerase chain reaction technology (HRM10SNP) and the other targeting 20 SNPs and based on the Sequenom MassARRAY platform (iPLEX20SNP). METHODS: An in-silico analysis of the 20 SNPs used for the iPLEX20SNP method was initially conducted using sequence type (ST) data on the P. aeruginosa PubMLST website. A total of 506 clinical isolates collected from patients attending 11 CF centres throughout Australia were then tested by both the HRM10SNP and iPLEX20SNP assays. Type-ability and discriminatory power of the methods, as well as their ability to identify commonly shared P. aeruginosa strains, were compared. RESULTS: The in-silico analyses showed that the 1401 STs available on the PubMLST website could be divided into 927 different 20-SNP profiles (D-value = 0.999), and that most STs of national or international importance in CF could be distinguished either individually or as belonging to closely related single- or double-locus variant groups. When applied to the 506 clinical isolates, the iPLEX20SNP provided better discrimination over the HRM10SNP method with 147 different 20-SNP and 92 different 10-SNP profiles observed, respectively. For detecting the three most commonly shared Australian P. aeruginosa strains AUST-01, AUST-02 and AUST-06, the two methods were in agreement for 80/81 (98.8%), 48/49 (97.8%) and 11/12 (91.7%) isolates, respectively. CONCLUSIONS: The iPLEX20SNP is a superior new method for broader SNP-based MLST-style investigations of P. aeruginosa. However, because of convenience and availability, the HRM10SNP method remains better suited for clinical microbiology laboratories that only utilise real-time PCR technology and where the main interest is detection of the most highly-prevalent P. aeruginosa CF strains within Australian clinics.


Subject(s)
Bacterial Typing Techniques/methods , Cystic Fibrosis/complications , High-Throughput Nucleotide Sequencing/methods , Multilocus Sequence Typing/methods , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Real-Time Polymerase Chain Reaction , Australia , Cystic Fibrosis/microbiology , DNA, Bacterial/analysis , Genotype , Humans , Polymorphism, Single Nucleotide , Pseudomonas Infections/diagnosis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification
12.
Eur Respir J ; 41(5): 1091-100, 2013 May.
Article in English | MEDLINE | ID: mdl-22878877

ABSTRACT

Recent molecular-typing studies suggest cross-infection as one of the potential acquisition pathways for Pseudomonas aeruginosa in patients with cystic fibrosis (CF). In Australia, there is only limited evidence of unrelated patients sharing indistinguishable P. aeruginosa strains. We therefore examined the point-prevalence, distribution, diversity and clinical impact of P. aeruginosa strains in Australian CF patients nationally. 983 patients attending 18 Australian CF centres provided 2887 sputum P. aeruginosa isolates for genotyping by enterobacterial repetitive intergenic consensus-PCR assays with confirmation by multilocus sequence typing. Demographic and clinical details were recorded for each participant. Overall, 610 (62%) patients harboured at least one of 38 shared genotypes. Most shared strains were in small patient clusters from a limited number of centres. However, the two predominant genotypes, AUST-01 and AUST-02, were widely dispersed, being detected in 220 (22%) and 173 (18%) patients attending 17 and 16 centres, respectively. AUST-01 was associated with significantly greater treatment requirements than unique P. aeruginosa strains. Multiple clusters of shared P. aeruginosa strains are common in Australian CF centres. At least one of the predominant and widespread genotypes is associated with increased healthcare utilisation. Longitudinal studies are now needed to determine the infection control implications of these findings.


Subject(s)
Cystic Fibrosis/microbiology , Genotype , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Adolescent , Adult , Australia , Bacterial Typing Techniques , Body Mass Index , Child , Child, Preschool , Cross Infection , Female , Humans , Male , Phenotype , Polymerase Chain Reaction , Pseudomonas Infections/complications , Young Adult
13.
J Clin Microbiol ; 51(12): 3975-80, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24048536

ABSTRACT

Burkholderia cepacia complex organisms are important transmissible pathogens found in cystic fibrosis (CF) patients. In recent years, the rates of cross-infection of epidemic strains have declined due to effective infection control efforts. However, cases of sporadic B. cepacia complex infection continue to occur in some centers. The acquisition pathways and clinical outcomes of sporadic B. cepacia complex infection are unclear. We sought to determine the patient clinical characteristics, outcomes, incidence, and genotypic relatedness for all cases of B. cepacia complex infection at two CF centers. We also sought to study the external conditions that influence the acquisition of infection. From 2001 to 2011, 67 individual organisms were cultured from the respiratory samples of 64 patients. Sixty-five percent of the patients were adults, in whom chronic infections were more common (68%) (P = 0.006). The incidence of B. cepacia complex infection increased by a mean of 12% (95% confidence interval [CI], 3 to 23%) per year. The rates of transplantation and death were similar in the incident cases who developed chronic infection compared to those in patients with chronic Pseudomonas aeruginosa infection. Multilocus sequence typing revealed 50 individual strains from 65 isolates. Overall, 85% of the patients were infected with unique strains, suggesting sporadic acquisition of infection. The yearly incidence of nonepidemic B. cepacia complex infection was positively correlated with the amount of rainfall in the two sites examined: subtropical Brisbane (r = 0.65, P = 0.031) and tropical Townsville (r = 0.82, P = 0.002). This study demonstrates that despite strict cohort segregation, new cases of unrelated B. cepacia complex infection continue to occur. These data also support an environmental origin of infection and suggest that climate conditions may be associated with the acquisition of B. cepacia complex infections.


Subject(s)
Burkholderia Infections/epidemiology , Burkholderia cepacia complex/isolation & purification , Cystic Fibrosis/complications , Adolescent , Adult , Burkholderia Infections/microbiology , Burkholderia cepacia complex/classification , Burkholderia cepacia complex/genetics , Child , Child, Preschool , Cluster Analysis , Female , Genotype , Humans , Incidence , Male , Multilocus Sequence Typing , Risk Factors , Young Adult
14.
PLoS One ; 18(5): e0285856, 2023.
Article in English | MEDLINE | ID: mdl-37192202

ABSTRACT

Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial.


Subject(s)
Ceftazidime , Pseudomonas Infections , Humans , Ceftazidime/pharmacology , Pseudomonas aeruginosa , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Drug Combinations , Azabicyclo Compounds/pharmacology
16.
Microb Genom ; 8(2)2022 02.
Article in English | MEDLINE | ID: mdl-35113778

ABSTRACT

Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are characterized by increasingly frequent acute pulmonary exacerbations that reduce life quality and length. Human airways are home to a rich polymicrobial environment, which includes members of the obligately anaerobic genus Prevotella. Despite their commonness, surprisingly little is known about the prevalence, role, genomic diversity and antimicrobial resistance (AMR) potential of Prevotella species and strains in healthy and diseased airways. Here, we used comparative genomics to develop a real-time PCR assay to permit rapid Prevotella species identification and quantification from cultures and clinical specimens. Assay specificity was validated across a panel of Prevotella and non-Prevotella species, followed by PCR screening of CF and COPD respiratory-derived cultures. Next, 35 PCR-positive isolates were subjected to whole-genome sequencing. Of eight identified Prevotella species, P. histicola, P. melaninogenica, P. nanceiensis, P. salivae and P. denticola overlapped between participant cohorts. Phylogenomic analysis revealed considerable interhost but limited intrahost diversity, suggesting patient-specific lineages in the lower airways, probably from oral cavity aspirations. Correlation of phenotypic AMR profiles with AMR genes identified excellent correlation between tetQ presence and decreased doxycycline susceptibility, and ermF presence and decreased azithromycin susceptibility and clindamycin resistance. AMR rates were higher in the CF isolates, reflecting greater antibiotic use in this cohort. All tested Prevotella isolates were tobramycin-resistant, providing a potential selection method to improve Prevotella culture retrieval rates. Our addition of 35 airway-derived Prevotella genomes to public databases will enhance ongoing efforts to unravel the role of this diverse and enigmatic genus in both diseased and healthy lungs.


Subject(s)
Drug Resistance, Bacterial/genetics , Genomics , Prevotella/genetics , Prevotella/isolation & purification , Pulmonary Disease, Chronic Obstructive/microbiology , Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/microbiology , Humans , Lung , Microbial Sensitivity Tests , Prevotella/drug effects , Sputum/microbiology
17.
J Cyst Fibros ; 21(1): e35-e43, 2022 01.
Article in English | MEDLINE | ID: mdl-33775602

ABSTRACT

BACKGROUND: Antimicrobial resistance in cystic fibrosis (CF) Pseudomonas aeruginosa airway infection is complex and often attributed to chromosomal mutations. How these mutations emerge in specific strains or whether particular gene mutations are clinically informative is unclear. This study focused on oprD, which encodes an outer membrane porin associated with carbapenem resistance when it is downregulated or inactivated. AIM: Determine how mutations in oprD emerge in two prevalent Australian shared CF strains of P. aeruginosa and their clinical relevance. METHODS: The two most common shared CF strains in Queensland were investigated using whole genome sequencing and their oprD sequences and antimicrobial resistance phenotypes were established. P. aeruginosa mutants with the most common oprD variants were constructed and characterised. Clinical variables were compared between people with or without evidence of infection with strains harbouring these variants. RESULTS: Frequently found nonsense mutations arising from a 1-base pair substitution in oprD evolved independently in three sub-lineages, and are likely major contributors to the reduced carbapenem susceptibility observed in the clinical isolates. Lower baseline FEV1 %predicted was identified as a risk factor for infection with a sub-lineage (odds ratio=0.97; 95% confidence interval 0.96-0.99; p<0.001). However, acquiring these sub-lineage strains did not confer an accelerated decline in FEV1 nor increase the risk of death/lung transplantation. CONCLUSIONS: Sub-lineages harbouring specific mutations in oprD have emerged and persisted in the shared strain populations. Infection with the sub-lineages was more likely in people with lower lung function, but this was not predictive of a worse clinical trajectory.


Subject(s)
Carbapenems/therapeutic use , Cystic Fibrosis/microbiology , Porins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/genetics , Adolescent , Adult , Australia , Drug Resistance, Bacterial/genetics , Female , Humans , Male , Mutation , Pseudomonas aeruginosa , Whole Genome Sequencing , Young Adult
18.
J Med Microbiol ; 71(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36301593

ABSTRACT

Background. Antimicrobial resistance (AMR) is an ever-increasing global health concern. One crucial facet in tackling the AMR epidemic is earlier and more accurate AMR diagnosis, particularly in the dangerous and highly multi-drug-resistant ESKAPE pathogen, Pseudomonas aeruginosa.Objectives. We aimed to develop two SYBR Green-based mismatch amplification mutation assays (SYBR-MAMAs) targeting GyrA T83I (gyrA248) and GyrA D87N, D87Y and D87H (gyrA259). Together, these variants cause the majority of fluoroquinolone (FQ) AMR in P. aeruginosa.Methods. Following assay validation, the gyrA248 and gyrA259 SYBR-MAMAs were tested on 84 Australian clinical P. aeruginosa isolates, 46 of which demonstrated intermediate/full ciprofloxacin resistance according to antimicrobial susceptibility testing.Results. Our two SYBR-MAMAs correctly predicted an AMR phenotype in the majority (83%) of isolates with intermediate/full FQ resistance. All FQ-sensitive strains were predicted to have a sensitive phenotype. Whole-genome sequencing confirmed 100 % concordance with SYBR-MAMA genotypes.Conclusions. Our GyrA SYBR-MAMAs provide a rapid and cost-effective method for same-day identification of FQ AMR in P. aeruginosa. An additional SYBR-MAMA targeting the GyrB S466Y/S466F variants would increase FQ AMR prediction to 91 %. Clinical implementation of our assays will permit more timely treatment alterations in cases where decreased FQ susceptibility is identified, leading to improved patient outcomes and antimicrobial stewardship.


Subject(s)
Fluoroquinolones , Pseudomonas aeruginosa , Fluoroquinolones/pharmacology , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Real-Time Polymerase Chain Reaction , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Australia , Mutation
19.
J Clin Microbiol ; 49(1): 263-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21084517

ABSTRACT

Monitoring the emergence and transmission of Pseudomonas aeruginosa strains among cystic fibrosis (CF) patients is important for infection control in CF centers internationally. A recently developed multilocus sequence typing (MLST) scheme is used for epidemiologic analyses of P. aeruginosa outbreaks; however, little is known about its suitability for isolates from CF patients compared with that of pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). As part of a prevalence study of P. aeruginosa strains in Australian CF clinics, we compared the discriminatory power and concordance of ERIC-PCR, PFGE, and MLST among 93 CF sputum and 11 control P. aeruginosa isolates. PFGE and MLST analyses were also performed on 30 paired isolates collected 85 to 354 days apart from 30 patients attending two CF centers separated by 3,600 kilometers in order to detect within-host evolution. Each of the three methods displayed high levels of concordance and discrimination; however, overall lower discrimination was seen with ERIC-PCR than with MLST and PFGE. Analysis of the 50 ERIC-PCR types yielded 54 PFGE types, which were related by ≤ 6 band differences, and 59 sequence types, which were classified into 7 BURST groups and 42 singletons. MLST also proved useful for detecting novel and known strains and for inferring relatedness among unique PFGE types. However, 47% of the paired isolates produced PFGE patterns that within 1 year differed by one to five bands, whereas with MLST all paired isolates remained identical. MLST thus represents a categorical analysis tool with resolving power similar to that of PFGE for typing P. aeruginosa. Its focus on highly conserved housekeeping genes is particularly suited for long-term clinical monitoring and detecting novel strains.


Subject(s)
Bacterial Typing Techniques/methods , Cystic Fibrosis/complications , Multilocus Sequence Typing/methods , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/genetics , Sputum/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Cluster Analysis , Genotype , Humans , Middle Aged , Molecular Epidemiology/methods , Pseudomonas aeruginosa/isolation & purification , Young Adult
20.
Front Microbiol ; 12: 789550, 2021.
Article in English | MEDLINE | ID: mdl-34987489

ABSTRACT

Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant.

SELECTION OF CITATIONS
SEARCH DETAIL