Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
BMC Genomics ; 25(1): 180, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38355402

ABSTRACT

Pecan scab is a devastating disease that causes damage to pecan (Carya illinoinensis (Wangenh.) K. Koch) fruit and leaves. The disease is caused by the fungus Venturia effusa (G. Winter) and the main management practice for controlling the disease is by application of fungicides at 2-to-3-week intervals throughout the growing season. Besides disease-related yield loss, application of fungicides can result in considerable cost and increases the likelihood of fungicide resistance developing in the pathogen. Resistant cultivars are available for pecan growers; although, in several cases resistance has been overcome as the pathogen adapts to infect resistant hosts. Despite the importance of host resistance in scab management, there is little information regarding the molecular basis of genetic resistance to pecan scab.The purpose of this study was to elucidate mechanisms of natural pecan scab resistance by analyzing transcripts that are differentially expressed in pecan leaf samples from scab resistant and susceptible trees. The leaf samples were collected from trees in a provenance collection orchard that represents the natural range of pecan in the US and Mexico. Trees in the orchard have been exposed to natural scab infections since planting in 1989, and scab ratings were collected over three seasons. Based on this data, ten susceptible trees and ten resistant trees were selected for analysis. RNA-seq data was collected and analyzed for diseased and non-diseased parts of susceptible trees as well as for resistant trees. A total of 313 genes were found to be differentially expressed when comparing resistant and susceptible trees without disease. For susceptible samples showing scab symptoms, 1,454 genes were identified as differentially expressed compared to non-diseased susceptible samples. Many genes involved in pathogen recognition, defense responses, and signal transduction were up-regulated in diseased samples of susceptible trees, whereas differentially expressed genes in pecan scab resistant samples were generally down-regulated compared to non-diseased susceptible samples.Our results provide the first account of candidate genes involved in resistance/susceptibility to pecan scab under natural conditions in a pecan orchard. This information can be used to aid pecan breeding programs and development of biotechnology-based approaches for generating pecan cultivars with more durable scab resistance.


Subject(s)
Ascomycota , Carya , Fungicides, Industrial , Carya/genetics , Carya/microbiology , Transcriptome , Trees/genetics , Ascomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Breeding
2.
Plant Dis ; 108(6): 1820-1832, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277651

ABSTRACT

Assessments of the severity of scab (Venturia effusa), an economically significant disease of pecan, are critical for determining pecan cultivar susceptibility, disease epidemiology, and integrated disease management approaches. We developed a standard area diagram (SAD) set to aid in assessments of pecan leaflet scab. Leaflets with scab lesions were harvested and scanned using a flatbed scanner at 600 dpi, and Fiji (ImageJ) was used to determine the actual percent disease severity. The SADs had 10 leaflets ranging in severity from 0.2 to 48.9%. Forty "small" (1.34 to 7.43 cm2) and 40 "large" (7.67 to 25.9 cm2) leaflet images were randomized for rater assessments. The images were assessed twice by 36 raters, first without and then with the SADs as a guide. Data were subjected to analysis using Lin's concordance correlation coefficient (LCC, pc) to determine the accuracy of ratings and by intraclass correlation coefficient (ICC) analysis to determine interrater reliability. The effects of rater experience, rater location, and leaflet size were also determined. The SADs significantly improved the agreement between raters and the actual values (LCC, pc = 0.70 and 0.84 without and with the SADs, respectively). The reliability of estimates was improved (ICC = 0.54 and 0.82 without and with the SADs, respectively). The effect of rater location on overall concordance was significant without and with the SADs based on an analysis of variance using a generalized linear model and lsmeans separation (P < 0.05). A generalized linear mixed model analysis revealed that there was a significant interaction between rater location, experience, and the use of the SADs, with some raters having greater improvement in generalized bias and concordance. Raters had a significantly better accuracy when rating "small" leaves (LCC, pc = 0.86) compared with "large" leaves (LCC, pc = 0.82) when using the SADs, highlighting the impact of psychophysics on field evaluations of plant disease severity. The proposed SADs will serve as an improved tool for performing pecan leaflet scab assessments by the pecan research community.


Subject(s)
Carya , Plant Diseases , Plant Leaves , Plant Diseases/microbiology , Carya/microbiology , Plant Leaves/microbiology , Reproducibility of Results , Ascomycota/physiology , Observer Variation
3.
Phytopathology ; 112(10): 2224-2235, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35596236

ABSTRACT

Scab, caused by the plant-pathogenic fungus Venturia effusa, is a major disease of pecan in South America, resulting in loss of quantity and quality of nut yield. Characteristics of the populations of V. effusa in South America are unknown. We used microsatellites to describe the genetic diversity and population structure of V. effusa in South America, and determined the mating type status of the pathogen. The four hierarchically sampled orchard populations from Argentina (AR), Brazil (BRC and BRS), and Uruguay (UR) had moderate to high genotypic and gene diversity. There was evidence of population differentiation (Fst = 0.196) but the correlation between geographic distance and genetic distance was not statistically significant. Genetic differentiation was minimal between the UR, BRC, and BRS populations, and these populations were more clearly differentiated from the AR population. The MAT1-1 and MAT1-2 mating types occurred in all four orchards and their frequencies did not deviate from the 1:1 ratio expected under random mating; however, multilocus linkage equilibrium was rejected in three of the four populations. The population genetics of South American populations of V. effusa has many similarities to the population genetics of V. effusa previously described in the United States. Characterizing the populations genetics and reproductive systems of V. effusa are important to establish the evolutionary potential of the pathogen and, thus, its adaptability-and can provide a basis for informed approaches to utilizing available host resistance and determining phytosanitary needs.


Subject(s)
Ascomycota , Carya , Ascomycota/genetics , Brazil , Carya/genetics , Carya/microbiology , Fungal Genus Venturia , Genes, Mating Type, Fungal/genetics , Genetic Variation , Genetics, Population , Plant Diseases/microbiology
4.
Appl Environ Microbiol ; 82(15): 4696-4704, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27235435

ABSTRACT

UNLABELLED: Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. IMPORTANCE: Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents.


Subject(s)
Phytophthora/isolation & purification , Rivers/parasitology , Capsicum/parasitology , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Plant Diseases/parasitology , Southwestern United States
5.
Plant Dis ; 99(11): 1468-1476, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30695969

ABSTRACT

'UCB-1' (Pistacia atlantica × Pistacia integerrima) rootstock is a hybrid cultivar widely used by the U.S. pistachio industry. In the last three years, a large number of micropropagated UCB-1 pistachio rootstocks planted in California and Arizona orchards exhibited shortened internodes, stunted growth, swollen lateral buds, bushy/bunchy growth, stem galls with multiple buds, and twisted roots with minimal lateral branching. Field T-budding success in affected orchards was reduced to approximately 30% with unusual bark cracking often observed around the bud-union. The percentage of abnormal rootstocks within affected orchards varied from 10 to 90%. We have termed the cumulative symptoms "pistachio bushy top syndrome" (PBTS) to describe these affected trees. Two isolates, both containing virulence factors from the phytopathogen Rhodococcus fascians, were identified on symptomatic trees in field and nursery samples. Micropropagated UCB-1 trees inoculated with the Rhodococcus isolates exhibited stunted growth, shortened internode length, swollen lateral buds, sylleptic branching, and differences in root morphology, compared with control UCB-1 trees. To our knowledge, this is the first report of Rhodococcus isolates, related to Rhodococcus fascians, causing disease on a commercial tree crop and the results presented indicate that this organism is responsible at least in part for PBTS in California and Arizona.

6.
AMA J Ethics ; 26(1): E21-25, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38180855

ABSTRACT

This article argues that, although efforts to integrate checklists for assessing bias in educational content represent a sincere effort to address or mitigate harm, such efforts will likely have limited (if any) impact on curricular reform or the actual lived experiences of minoritized students. This is because checklists are not designed for justice-oriented assessment and thus will not create the kind of change needed to transform health professions, especially medical education. What is needed is more attention to the ways whiteness is used to organize health professions education and a deep commitment to faculty development focused on raising educators' critical consciousness.


Subject(s)
Checklist , Education, Medical , Humans , Bias , Health Occupations , Social Justice
7.
Sci Rep ; 14(1): 18592, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127859

ABSTRACT

Pecan (Carya illinoinensis) is an economically important nut crop known for its genetic diversity and adaptability to various climates. Understanding the growth variability, phenological traits, and population structure of pecan populations is crucial for breeding programs and conservation. In this study, plant growth and phenological traits were evaluated over three consecutive seasons (2015-2017) for 550 genotypes from 26 provenances. Significant variations in plant height, stem diameter, and budbreak were observed among provenances, with Southern provenances exhibiting faster growth and earlier budbreak compared to Northern provenances. Population structure analysis using SNP markers revealed eight distinct subpopulations, reflecting genetic differentiation among provenances. Notably, Southern Mexico collections formed two separate clusters, while Western collections, such as 'Allen 3', 'Allen 4', and 'Riverside', were distinguished from others. 'Burkett' and 'Apache' were grouped together due to their shared maternal parentage. Principal component analysis and phylogenetic tree analysis further supported subpopulation differentiation. Genetic differentiation among the 26 populations was evident, with six clusters highly in agreement with the subpopulations identified by STRUCTURE and fastSTRUCTURE. Principal components analysis (PCA) revealed distinct groups, corresponding to subpopulations identified by genetic analysis. Discriminant analysis of PCA (DAPC) based on provenance origin further supported the genetic structure, with clear separation of provenances into distinct clusters. These findings provide valuable insights into the genetic diversity and growth patterns of pecan populations. Understanding the genetic basis of phenological traits and population structure is essential for selecting superior cultivars adapted to diverse environments. The identified subpopulations can guide breeding efforts to develop resilient rootstocks and contribute to the sustainable management of pecan genetic resources. Overall, this study enhances our understanding of pecan genetic diversity and informs conservation and breeding strategies for the long-term viability of pecan cultivation.


Subject(s)
Carya , Genetic Variation , Phenotype , Carya/genetics , Carya/growth & development , Phylogeny , Genotype , Mexico , Polymorphism, Single Nucleotide , Principal Component Analysis , Genetics, Population
8.
Plants (Basel) ; 12(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679073

ABSTRACT

Carya&nbsp;illinoinensis (Wangenh.) K.Koch production has expanded beyond the native distribution as the genetic diversity of the species, in part, has allowed the trees to grow under broad geographic and climatic ranges. Research in other plant species has demonstrated that the phytobiome enhances their ability to survive and thrive in specific environments and, conversely, is influenced by the prevailing environment and plant genetics, among other factors. We sought to analyze the microbiota of pecan seedlings from the controlled cross 'Lakota' × 'Oaxaca' that were made in Georgia and Texas, respectively, to determine if the maternal geographical origin influences the microbiome of the resulting progeny. No significant differences in bacterial communities were observed between the seeds obtained from the two different states (p = 0.081). However, seed origin did induce significant differences in leaf fungal composition (p = 0.012). Results suggest that, in addition to some environmental, epigenetics, or host genetic components, ecological processes, such as dispersal mechanisms of the host, differentially impact the pecan microbiome, which may have ramifications for the health of trees grown in different environments. Future studies on the role of the microbiome in plant health and productivity will aid in the development of sustainable agriculture for improved food security.

9.
Foods ; 12(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36832940

ABSTRACT

Pecan (Carya illinoinensis) nuts are an economically valuable crop native to the United States and Mexico. A proteomic summary from two pecan cultivars at multiple time points was used to compare protein accumulation during pecan kernel development. Patterns of soluble protein accumulation were elucidated using qualitative gel-free and label-free mass-spectrometric proteomic analyses and quantitative (label-free) 2-D gel electrophoresis. Two-dimensional (2-D) gel electrophoresis distinguished a total of 1267 protein spots and shotgun proteomics identified 556 proteins. Rapid overall protein accumulation occurred in mid-September during the transition to the dough stage as the cotyledons enlarge within the kernel. Pecan allergens Car i 1 and Car i 2 were first observed to accumulate during the dough stage in late September. While overall protein accumulation increased, the presence of histones diminished during development. Twelve protein spots accumulated differentially based on 2-D gel analysis in the weeklong interval between the dough stage and the transition into a mature kernel, while eleven protein spots were differentially accumulated between the two cultivars. These results provide a foundation for more focused proteomic analyses of pecans that may be used in the future to identify proteins that are important for desirable traits, such as reduced allergen content, improved polyphenol or lipid content, increased tolerance to salinity, biotic stress, seed hardiness, and seed viability.

10.
PLoS One ; 18(2): e0281805, 2023.
Article in English | MEDLINE | ID: mdl-36795673

ABSTRACT

In perennial plants such as pecan, once reproductive maturity is attained, there are genetic switches that are regulated and required for flower development year after year. Pecan trees are heterodichogamous with both pistillate and staminate flowers produced on the same tree. Therefore, defining genes exclusively responsible for pistillate inflorescence and staminate inflorescence (catkin) initiation is challenging at best. To understand these genetic switches and their timing, this study analyzed catkin bloom and gene expression of lateral buds collected from a protogynous (Wichita) and a protandrous (Western) pecan cultivar in summer, autumn and spring. Our data showed that pistillate flowers in the current season on the same shoot negatively impacted catkin production on the protogynous 'Wichita' cultivar. Whereas fruit production the previous year on 'Wichita' had a positive effect on catkin production on the same shoot the following year. However, fruiting the previous year nor current year pistillate flower production had no significant effect on catkin production on 'Western' (protandrous cultivar) cultivar. The RNA-Seq results present more significant differences between the fruiting and non-fruiting shoots of the 'Wichita' cultivar compared to the 'Western' cultivar, revealing the genetic signals likely responsible for catkin production. Our data presented here, indicates the genes showing expression for the initiation of both types of flowers the season before bloom.


Subject(s)
Carya , Carya/genetics , Plant Cone , Flowers/genetics , Fruit , Gene Expression Profiling
11.
Care Manag J ; 13(3): 108-15, 2012.
Article in English | MEDLINE | ID: mdl-23072174

ABSTRACT

Support brokers are entities that provide information and assistance to self-directed clients in Medicaid waiver programs. Although all Cash & Counseling programs have support brokerage, each state has a great deal of liberty in determining how those functions are carried out, who provides those activities, which functions are emphasized and how responsibility for support broker tasks coordinates with other support activities. In this article, we map out the various ways in which states have operationalized the support brokerage concept. Differences in title, qualifications, training, hiring preferences, and caseload are described and further directions for research are suggested.


Subject(s)
Budgets , Case Management/economics , Medicaid/economics , Humans , State Government , United States
12.
Front Plant Sci ; 13: 780335, 2022.
Article in English | MEDLINE | ID: mdl-35463450

ABSTRACT

Pecan bacterial leaf scorch, caused by Xylella fastidiosa subsp. multiplex, is an economically significant disease of pecan with known detrimental effects on the yield of susceptible cultivars. In this study, endosperm was harvested from developing pecan seeds, and direct qPCR and sequencing were used to detect and confirm the presence of X. fastidiosa. DNA was isolated from mature seeds originating from seven trees, revealing a positivity rate up to 90%, and transmission of X. fastidiosa from infected seed to the germinated seedlings was found to be over 80%. Further epidemiological analyses were performed to determine where X. fastidiosa localizes in mature seed and seedlings. The highest concentrations of X. fastidiosa DNA were found in the hilum and outer integument of the seeds and the petioles, respectively. High-, medium-, and low-density seeds were harvested to determine the impact of the bacterium on seed density and seedling growth rate. The growth rate of seedlings originating from low-density seeds was significantly reduced compared to the medium- and high-density seeds. Despite the increased growth and germination rates, the high-density seed group had a greater proportion of samples that tested positive for the presence of X. fastidiosa by qPCR. The results demonstrate the ability of X. fastidiosa to colonize developing seeds and be efficiently transmitted from well-developed seeds to germinated seedlings. Continued research is needed to understand the plant-microbe interactions involved in the colonization of pecan seeds by X. fastidiosa and to develop effective phytosanitary approaches to reduce the risks posed by seed transmission.

13.
Nat Commun ; 12(1): 4125, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226565

ABSTRACT

Genome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence-absence and functional annotation database among genomes and within the two outbred haplotypes of the 'Lakota' genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.


Subject(s)
Carya/genetics , Chromosomes , Genome, Plant , Genomics , Plant Breeding , Diploidy , Disease Resistance/genetics , Genetic Variation , Genotype , Haplotypes , Phenotype
14.
J Appl Meas ; 11(2): 122-41, 2010.
Article in English | MEDLINE | ID: mdl-20693698

ABSTRACT

This study presents an approach to questionnaire design within educational research based on Guttman's mapping sentences (Guttman, 1977) and Many-Facet Rasch Measurement Theory (Linacre, 1994). The primary purpose of this study was to illustrate how Guttman's mapping sentences can be used to develop an instrument that explores the grading philosophies of teachers. A secondary purpose was to clarify teacher grading philosophies (i.e., severity or leniency) as a measurement construct. We designed a 54-item questionnaire in which each item represented a unique combination of student characteristics, i.e., varying levels of classroom achievement, ability, behavior, and effort. The grades assigned by the teachers to the scenarios were analyzed using the FACETS (Linacre, 2007) computer program. The results of the analyses suggest that the grading philosophies of teachers represent a unidimensional construct which is influenced, to varying extents, by the classroom achievement (primarily), behavior, and effort of students; whereas the measurement value added by the inclusion of the ability facet is uncertain.


Subject(s)
Educational Measurement/statistics & numerical data , Faculty , Models, Statistical , Teaching/statistics & numerical data , Achievement , Biostatistics , Humans , Models, Educational , Philosophy , Psychometrics/statistics & numerical data , Software , Surveys and Questionnaires
15.
Front Microbiol ; 11: 14, 2020.
Article in English | MEDLINE | ID: mdl-32082278

ABSTRACT

Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.

16.
Appl Environ Microbiol ; 75(17): 5631-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19581467

ABSTRACT

Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.


Subject(s)
Bignoniaceae/microbiology , Plant Diseases/microbiology , Xylella/classification , Xylella/isolation & purification , Bacterial Proteins/genetics , Cluster Analysis , DNA Gyrase/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Genotype , Membrane Glycoproteins/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Southwestern United States , Xylella/genetics
17.
Gigascience ; 8(5)2019 05 01.
Article in English | MEDLINE | ID: mdl-31049561

ABSTRACT

BACKGROUND: Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits. RESULTS: We obtained >187.22 and 178.87 gigabases of sequence, and ∼288× and 248× genome coverage, to a pecan cultivar ("Pawnee") and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives. CONCLUSIONS: Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement.


Subject(s)
Carya/genetics , Evolution, Molecular , Genome, Plant/genetics , Nuts/genetics , Molecular Sequence Annotation , Phylogeny
19.
Front Plant Sci ; 9: 1799, 2018.
Article in English | MEDLINE | ID: mdl-30619389

ABSTRACT

Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative ("evo-devo") approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.

20.
Genome Announc ; 4(3)2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27284129

ABSTRACT

Rhodococcus fascians, a phytopathogen that alters plant development, inflicts significant losses in plant production around the world. We report here the complete genome sequence of R. fascians D188, a well-characterized model isolate, and Rhodococcus species PBTS (pistachio bushy top syndrome) 1 and 2, which were shown to be responsible for a disease outbreak in pistachios.

SELECTION OF CITATIONS
SEARCH DETAIL