Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
R Soc Open Sci ; 11(5): 231882, 2024 May.
Article in English | MEDLINE | ID: mdl-39076813

ABSTRACT

Bumblebee activity typically decreases during rainfall, putting them under the threat of the increased frequency of precipitation due to climate change. A novel rain machine was used within a flight arena to observe the behavioural responses of bumblebees (Bombus terrestris) to simulated rain at both a colony and individual level. During rainfall, a greater proportion of workers left the arena than entered, the opposite of which was seen during dry periods, implying that they compensate for their lack of activity when conditions improve. The proportion of workers flying and foraging decreased while resting increased in rain. This pattern reversed during dry periods, providing further evidence for compensatory activity. The increase in resting behaviour during rain is thought to evade the high energetic costs of flying while wet without unnecessarily returning to the nest. This effect was not repeated in individual time budgets, measured with lone workers, suggesting that the presence of conspecifics accelerates the decision of their behavioural response, perhaps via local enhancement. Bumblebees probably use social cues to strategize their energetic expenditure during precipitation, allowing them to compensate for the reduced foraging activity during rainfall when conditions improve.

2.
Open Biol ; 14(5): 230430, 2024 May.
Article in English | MEDLINE | ID: mdl-38806146

ABSTRACT

Both leaves and petals are covered in a cuticle, which itself contains and is covered by cuticular waxes. The waxes perform various roles in plants' lives, and the cuticular composition of leaves has received much attention. To date, the cuticular composition of petals has been largely ignored. Being the outermost boundary between the plant and the environment, the cuticle is the first point of contact between a flower and a pollinator, yet we know little about how plant-pollinator interactions shape its chemical composition. Here, we investigate the general structure and composition of floral cuticular waxes by analysing the cuticular composition of leaves and petals of 49 plant species, representing 19 orders and 27 families. We show that the flowers of plants from across the phylogenetic range are nearly devoid of wax crystals and that the total wax load of leaves in 90% of the species is higher than that of petals. The proportion of alkanes is higher, and the chain lengths of the aliphatic compounds are shorter in petals than in leaves. We argue these differences are a result of adaptation to the different roles leaves and petals play in plant biology.


Subject(s)
Flowers , Plant Leaves , Waxes , Plant Leaves/chemistry , Plant Leaves/metabolism , Waxes/chemistry , Waxes/metabolism , Flowers/chemistry , Flowers/metabolism , Phylogeny , Plant Epidermis/chemistry , Plant Epidermis/metabolism , Plants/chemistry , Plants/metabolism , Species Specificity
3.
Ecol Evol ; 14(7): e11651, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952664

ABSTRACT

Floral temperature is a flower characteristic that has the potential to impact the fitness of flowering plants and their pollinators. Likewise, the presence of floral temperature patterns, areas of contrasting temperature across the flower, can have similar impacts on the fitness of both mutualists. It is currently poorly understood how floral temperature changes under the influence of different weather conditions, and how floral traits may moderate these changes. The way that floral temperature changes with weather conditions will impact how stable floral temperatures are over time and their utility to plants and pollinators. The stability of floral temperature cues is likely to facilitate effective plant-pollinator interactions and play a role in the plant's reproductive success. We use thermal imaging to monitor how floral temperatures and temperature patterns of four plant species (Cistus 'snow fire' and 'snow white', Coreopsis verticillata and Geranium psilostemon) change with several weather variables (illumination, temperature; windspeed; cloud cover; humidity and pressure) during times that pollinators are active. All weather variables influenced floral temperature in one or more species. The directionality of these relationships was similar across species. In all species, light conditions (illumination) had the greatest influence on floral temperatures overall. Floral temperature and the extent to which flowers showed contrasting temperature patterns were influenced predominantly by light conditions. However, several weather variables had additional, lesser, influences. Furthermore, differences in floral traits, pigmentation and structure, likely resulted in differences in temperature responses to given conditions between species and different parts of the same flower. However, floral temperatures and contrasting temperature patterns that are sufficiently elevated for detection by pollinators were maintained across most conditions if flowers received moderate illumination. This suggests the presence of elevated floral temperature and contrasting temperature patterns are fairly constant and may have potential to influence plant-pollinator interactions across weather conditions.

SELECTION OF CITATIONS
SEARCH DETAIL