Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 20(4): e1012132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620028

ABSTRACT

Epstein-Barr virus (EBV) is an important cause of human lymphomas, including Burkitt lymphoma (BL). EBV+ BLs are driven by Myc translocation and have stringent forms of viral latency that do not express either of the two major EBV oncoproteins, EBNA2 (which mimics Notch signaling) and LMP1 (which activates NF-κB signaling). Suppression of Myc-induced apoptosis, often through mutation of the TP53 (p53) gene or inhibition of pro-apoptotic BCL2L11 (BIM) gene expression, is required for development of Myc-driven BLs. EBV+ BLs contain fewer cellular mutations in apoptotic pathways compared to EBV-negative BLs, suggesting that latent EBV infection inhibits Myc-induced apoptosis. Here we use an EBNA2-deleted EBV virus (ΔEBNA2 EBV) to create the first in vivo model for EBV+ BL-like lymphomas derived from primary human B cells. We show that cord blood B cells infected with both ΔEBNA2 EBV and a Myc-expressing vector proliferate indefinitely on a CD40L/IL21 expressing feeder layer in vitro and cause rapid onset EBV+ BL-like tumors in NSG mice. These LMP1/EBNA2-negative Myc-driven lymphomas have wild type p53 and very low BIM, and express numerous germinal center B cell proteins (including TCF3, BACH2, Myb, CD10, CCDN3, and GCSAM) in the absence of BCL6 expression. Myc-induced activation of Myb mediates expression of many of these BL-associated proteins. We demonstrate that Myc blocks LMP1 expression both by inhibiting expression of cellular factors (STAT3 and Src) that activate LMP1 transcription and by increasing expression of proteins (DNMT3B and UHRF1) known to enhance DNA methylation of the LMP1 promoters in human BLs. These results show that latent EBV infection collaborates with Myc over-expression to induce BL-like human B-cell lymphomas in mice. As NF-κB signaling retards the growth of EBV-negative BLs, Myc-mediated repression of LMP1 may be essential for latent EBV infection and Myc translocation to collaboratively induce human BLs.


Subject(s)
B-Lymphocytes , Burkitt Lymphoma , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Proto-Oncogene Proteins c-myc , Virus Latency , Animals , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/genetics , Humans , Mice , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , B-Lymphocytes/virology , B-Lymphocytes/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Apoptosis , Viral Proteins/metabolism , Viral Proteins/genetics
2.
Blood ; 139(7): 1066-1079, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34699595

ABSTRACT

Mutations in chromatin regulator ASXL1 are frequently identified in myeloid malignancies, in particular ∼40% of patients with chronic myelomonocytic leukemia (CMML). ASXL1 mutations are associated with poor prognosis in CMML and significantly co-occur with NRAS mutations. Here, we show that concurrent ASXL1 and NRAS mutations defined a population of CMML patients who had shorter leukemia-free survival than those with ASXL1 mutation only. Corroborating this human data, Asxl1-/- accelerated CMML progression and promoted CMML transformation to acute myeloid leukemia (AML) in NrasG12D/+ mice. NrasG12D/+;Asxl1-/- (NA) leukemia cells displayed hyperactivation of MEK/ERK signaling, increased global levels of H3K27ac, upregulation of Flt3. Moreover, we find that NA-AML cells overexpressed all the major inhibitory immune checkpoint ligands: programmed death-ligand 1 (PD-L1)/PD-L2, CD155, and CD80/CD86. Among them, overexpression of PD-L1 and CD86 correlated with upregulation of AP-1 transcription factors (TFs) in NA-AML cells. An AP-1 inhibitor or short hairpin RNAs against AP-1 TF Jun decreased PD-L1 and CD86 expression in NA-AML cells. Once NA-AML cells were transplanted into syngeneic recipients, NA-derived T cells were not detectable. Host-derived wild-type T cells overexpressed programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) receptors, leading to a predominant exhausted T-cell phenotype. Combined inhibition of MEK and BET resulted in downregulation of Flt3 and AP-1 expression, partial restoration of the immune microenvironment, enhancement of CD8 T-cell cytotoxicity, and prolonged survival in NA-AML mice. Our study suggests that combined targeted therapy and immunotherapy may be beneficial for treating secondary AML with concurrent ASXL1 and NRAS mutations.


Subject(s)
Disease Models, Animal , GTP Phosphohydrolases/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myelomonocytic, Chronic/pathology , Membrane Proteins/genetics , Mutation , Repressor Proteins/genetics , Tumor Microenvironment , Animals , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/immunology , Mice , Monomeric GTP-Binding Proteins/genetics , Phenotype , Signal Transduction
3.
Blood ; 137(23): 3259-3271, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33512434

ABSTRACT

Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras-/-; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.


Subject(s)
Down-Regulation , Gene Expression Regulation, Leukemic , Guanine Nucleotide Exchange Factors , Monomeric GTP-Binding Proteins , Mutation, Missense , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins p21(ras)/deficiency , Amino Acid Substitution , Animals , Cell Proliferation/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins p21(ras)/metabolism
4.
Blood ; 137(1): 61-74, 2021 01 07.
Article in English | MEDLINE | ID: mdl-32640012

ABSTRACT

NRAS Q61 mutations are prevalent in advanced/relapsed multiple myeloma (MM) and correlate with poor patient outcomes. Thus, we generated a novel MM model by conditionally activating expression of endogenous NrasQ61R and an MYC transgene in germinal center (GC) B cells (VQ mice). VQ mice developed a highly malignant MM characterized by a high proliferation index, hyperactivation of extracellular signal-regulated kinase and AKT signaling, impaired hematopoiesis, widespread extramedullary disease, bone lesions, kidney abnormalities, preserved programmed cell death protein 1 and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain immune-checkpoint pathways, and expression of human high-risk MM gene signatures. VQ MM mice recapitulate most of the biological and clinical features of human advanced/high-risk MM. These MM phenotypes are serially transplantable in syngeneic recipients. Two MM cell lines were also derived to facilitate future genetic manipulations. Combination therapies based on MEK inhibition significantly prolonged the survival of VQ mice with advanced-stage MM. Our study provides a strong rationale to develop MEK inhibition-based therapies for treating advanced/relapsed MM.


Subject(s)
B-Lymphocytes/pathology , Disease Models, Animal , Monomeric GTP-Binding Proteins/genetics , Multiple Myeloma/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Germinal Center/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Myeloma/pathology , Transgenes
5.
PLoS Pathog ; 16(2): e1008365, 2020 02.
Article in English | MEDLINE | ID: mdl-32059024

ABSTRACT

Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.


Subject(s)
B-Lymphocytes/metabolism , NFATC Transcription Factors/genetics , Animals , B-Lymphocytes/virology , Cell Line , DNA-Binding Proteins/metabolism , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Herpesvirus 4, Human/pathogenicity , Humans , Mice , Promoter Regions, Genetic/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Viral Proteins/metabolism , Virus Activation , Virus Latency
6.
PLoS Pathog ; 16(6): e1008590, 2020 06.
Article in English | MEDLINE | ID: mdl-32542010

ABSTRACT

EBV transforms B cells in vitro and causes human B-cell lymphomas including classical Hodgkin lymphoma (CHL), Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). The EBV latency protein, EBNA2, transcriptionally activates the promoters of all latent viral protein-coding genes expressed in type III EBV latency and is essential for EBV's ability to transform B cells in vitro. However, EBNA2 is not expressed in EBV-infected CHLs and BLs in humans. EBV-positive CHLs have type II latency and are largely driven by the EBV LMP1/LMP2A proteins, while EBV-positive BLs, which usually have type I latency are largely driven by c-Myc translocations, and only express the EBNA1 protein and viral non-coding RNAs. Approximately 15% of human BLs contain naturally occurring EBNA2-deleted viruses that support a form of viral latency known as Wp-restricted (expressing the EBNA-LP, EBNA3A/3B/3C, EBNA1 and BHRF1 proteins), but whether Wp-restricted latency and/or EBNA2-deleted EBV can induce lymphomas in humanized mice, or in the absence of c-Myc translocations, is unknown. Here we show that a naturally occurring EBNA2-deleted EBV strain (P3HR1) isolated from a human BL induces EBV-positive B-cell lymphomas in a subset of infected cord blood-humanized (CBH) mice. Furthermore, we find that P3HR1-infected lymphoma cells support two different viral latency types and phenotypes that are mutually exclusive: 1) Large (often multinucleated), CD30-positive, CD45-negative cells reminiscent of the Reed-Sternberg (RS) cells in CHL that express high levels of LMP1 but not EBNA-LP (consistent with type II viral latency); and 2) smaller monomorphic CD30-negative DLBCL-like cells that express EBNA-LP and EBNA3A but not LMP1 (consistent with Wp-restricted latency). These results reveal that EBNA2 is not absolutely required for EBV to form tumors in CBH mice and suggest that P3HR1 virus can be used to model EBV positive lymphomas with both Wp-restricted and type II latency in vivo.


Subject(s)
Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens/genetics , Gene Deletion , Herpesvirus 4, Human/physiology , Hodgkin Disease , Lymphoma, Large B-Cell, Diffuse , Viral Proteins/genetics , Virus Latency , Animals , Cell Line , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/pathogenicity , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Hodgkin Disease/virology , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/virology , Mice , Viral Proteins/metabolism
7.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32132242

ABSTRACT

Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (Δ3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic Δ3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. Δ3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. Δ3A and WT tumors expressed equivalent levels of EBNA2 and p16, but Δ3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, Δ3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus Δ3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice.IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (Δ3A) and wild-type EBV. The Δ3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, Δ3A tumors had less LMP1. Our analysis suggested that Δ3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors.


Subject(s)
Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Fetal Blood/metabolism , Herpesvirus 4, Human/genetics , Lymphoma/virology , Animals , B-Lymphocytes/virology , Cell Transformation, Viral , Disease Models, Animal , Gene Expression Regulation, Neoplastic , HEK293 Cells , Herpesvirus 4, Human/physiology , Humans , Killer Cells, Natural/immunology , Lymphoma/genetics , Lymphoma/pathology , Lymphoma, B-Cell , Mice , Mutagenesis, Site-Directed , Sequence Analysis, RNA , Sequence Deletion , T-Lymphocytes/immunology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Latency/genetics
8.
Proc Natl Acad Sci U S A ; 115(43): E10109-E10118, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30301799

ABSTRACT

By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.


Subject(s)
GATA2 Transcription Factor/genetics , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation/genetics , Haploinsufficiency/genetics , Hematopoiesis/genetics , Humans , Mice , Myelodysplastic Syndromes/genetics , Regulatory Sequences, Nucleic Acid/genetics , Stem Cells/metabolism , Zinc Fingers/genetics
9.
PLoS Pathog ; 14(8): e1007221, 2018 08.
Article in English | MEDLINE | ID: mdl-30125329

ABSTRACT

EBV causes human B-cell lymphomas and transforms B cells in vitro. EBNA3C, an EBV protein expressed in latently-infected cells, is required for EBV transformation of B cells in vitro. While EBNA3C undoubtedly plays a key role in allowing EBV to successfully infect B cells, many EBV+ lymphomas do not express this protein, suggesting that cellular mutations and/or signaling pathways may obviate the need for EBNA3C in vivo under certain conditions. EBNA3C collaborates with EBNA3A to repress expression of the CDKN2A-encoded tumor suppressors, p16 and p14, and EBNA3C-deleted EBV transforms B cells containing a p16 germline mutation in vitro. Here we have examined the phenotype of an EBNAC-deleted virus (Δ3C EBV) in a cord blood-humanized mouse model (CBH). We found that the Δ3C virus induced fewer lymphomas (occurring with a delayed onset) in comparison to the wild-type (WT) control virus, although a subset (10/26) of Δ3C-infected CBH mice eventually developed invasive diffuse large B cell lymphomas with type III latency. Both WT and Δ3C viruses induced B-cell lymphomas with restricted B-cell populations and heterogeneous T-cell infiltration. In comparison to WT-infected tumors, Δ3C-infected tumors had greatly increased p16 levels, and RNA-seq analysis revealed a decrease in E2F target gene expression. However, we found that Δ3C-infected tumors expressed c-Myc and cyclin E at similar levels compared to WT-infected tumors, allowing cells to at least partially bypass p16-mediated cell cycle inhibition. The anti-apoptotic proteins, BCL2 and IRF4, were expressed in Δ3C-infected tumors, likely helping cells avoid c-Myc-induced apoptosis. Unexpectedly, Δ3C-infected tumors had increased T-cell infiltration, increased expression of T-cell chemokines (CCL5, CCL20 and CCL22) and enhanced type I interferon response in comparison to WT tumors. Together, these results reveal that EBNA3C contributes to, but is not essential for, EBV-induced lymphomagenesis in CBH mice, and suggest potentially important immunologic roles of EBNA3C in vivo.


Subject(s)
Cell Transformation, Viral/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/physiology , Lymphoma, B-Cell/virology , Virus Latency/genetics , Animals , Cells, Cultured , Disease Models, Animal , Epstein-Barr Virus Infections/genetics , Fetal Blood/immunology , HEK293 Cells , Herpesvirus 4, Human/genetics , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Mice , Mice, Inbred NOD , Mice, Transgenic
10.
Blood ; 132(24): 2575-2579, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30377195

ABSTRACT

We and others have previously shown that Kras G12D is a much more potent oncogene than oncogenic Nras in hematological malignancies. We attributed the strong leukemogenic activity of KrasG12D at least partially to its unique capability to hyperactivate wild-type (WT) Nras and Hras. Here, we report that Sos1, a guanine nucleotide exchange factor, is required to mediate this process. Sos1 is overexpressed in Kras G12D/+ cells, but not in Nras Q61R/+ and Nras G12D/+ cells. KrasG12D proteins form a complex with Sos1 in vivo. Sos1 deficiency attenuates hyperactivation of WT Nras, Hras, and the downstream ERK signaling in Kras G12D/+ cells. Thus, Sos1 deletion ameliorates oncogenic Kras-induced myeloproliferative neoplasm (MPN) phenotypes and prolongs the survival of Kras G12D/+ mice. In contrast, Sos1 is dispensable for hyperactivated granulocyte-macrophage colony-stimulating factor signaling in Nras Q61R/+ cells, and Sos1 -/- does not affect MPN phenotypes in Nras Q61R/+ mice. Moreover, the survival of Kras G12D/+ ; Sos1 -/- recipients is comparable to that of Kras G12D/+ recipients treated with combined MEK and JAK inhibitors. Our study suggests that targeting Sos1-oncogenic Kras interaction may improve the survival of cancer patients with KRAS mutations.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Leukemia, Myeloid/metabolism , MAP Kinase Signaling System , Mutation, Missense , Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Amino Acid Substitution , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Leukemia, Myeloid/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins p21(ras)/genetics , SOS1 Protein/genetics
11.
Mod Pathol ; 32(Suppl 1): 38-43, 2019 01.
Article in English | MEDLINE | ID: mdl-30600319

ABSTRACT

All pathology subspecialties are more frequently receiving small needle core biopsies for the diagnosis of new lesions. While this results in potential diagnostic pitfalls, the tools available for hematopathology, including extensive panels of immunostains, PRC-based clonality assessment, and flow cytometry often allow accurate diagnoses even with very small specimens. This review presents a brief approach to such biopsies, using morphologic cues as well as ancillary studies, which provides an experience-based framework for approaching these cases and coming to a clear diagnosis while avoiding diagnostic errors. The approach is divided into three parts based on H & E cell morphology.


Subject(s)
Biopsy, Large-Core Needle , Hematologic Neoplasms/diagnosis , Lymph Nodes/pathology , Pathology, Surgical/methods , Biopsy, Fine-Needle , Humans , Lymph Nodes/surgery
12.
Blood ; 130(Suppl_1): 7, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-31940664

ABSTRACT

DISCLOSURES: No relevant conflicts of interest to declare.

13.
Blood ; 129(3): 358-370, 2017 01 19.
Article in English | MEDLINE | ID: mdl-27815262

ABSTRACT

Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.


Subject(s)
Cell Transformation, Neoplastic/genetics , GTP Phosphohydrolases/genetics , Leukemia, Myeloid, Acute/pathology , Megakaryocyte-Erythroid Progenitor Cells/pathology , Membrane Proteins/genetics , Tumor Suppressor Protein p53/genetics , Animals , Bone Marrow Transplantation , Humans , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System , Mice , Mutation , Signal Transduction , Tumor Suppressor Protein p53/deficiency
14.
Cancer Immunol Immunother ; 67(10): 1647-1658, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30073390

ABSTRACT

Phase I testing of the hu14.18-IL2 immunocytokine (IC) in melanoma patients showed immune activation, reversible toxicities, and a maximal tolerated dose of 7.5 mg/m2/day. Preclinical data in IC-treated tumor-bearing mice with low tumor burden documented striking antitumor effects. Patients with completely resectable recurrent stage III or stage IV melanoma were scheduled to receive 3 courses of IC at 6 mg/m2/day i.v. on days 1, 2 and 3 of each 28-day course. Patients were randomized to complete surgical resection either following neoadjuvant (Group A) or prior to adjuvant (Group B) IC course 1. Primary objectives were to: (1) evaluate histological evidence of anti-tumor activity and (2) evaluate recurrence-free survival (RFS) and OS. Twenty melanoma patients were randomized to Group A (11 patients) or B (9 patients). Two Group B patients did not receive IC due to persistent disease following surgery. Six of 18 IC-treated patients remained free of recurrence, with a median RFS of 5.7 months (95% confidence interval (CI) 1.8-not reached). The 24-month RFS rate was 38.9% (95% CI 17.5-60.0%). The median follow-up of surviving patients was 50.0 months (range: 31.8-70.4). The 24-month OS rate was 65.0% (95% CI 40.3-81.5%). Toxicities were similar to those previously reported. Exploratory tumor-infiltrating lymphocyte (TIL) analyses suggest prognostic value of TILs from Group A patients. Prolonged tumor-free survival was seen in some melanoma patients at high risk for recurrence who were treated with IC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Interleukin-2/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Melanoma/immunology , Melanoma/pathology , Middle Aged , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Pilot Projects , Survival Rate , Tumor Burden , Young Adult
15.
J Virol ; 91(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28077657

ABSTRACT

Epstein-Barr virus (EBV) infection is associated with B cell lymphomas in humans. The ability of EBV to convert human B cells into long-lived lymphoblastoid cell lines (LCLs) in vitro requires the collaborative effects of EBNA2 (which hijacks Notch signaling), latent membrane protein 1 (LMP1) (which mimics CD40 signaling), and EBV-encoded nuclear antigen 3A (EBNA3A) and EBNA3C (which inhibit oncogene-induced senescence and apoptosis). However, we recently showed that an LMP1-deleted EBV mutant induces B cell lymphomas in a newly developed cord blood-humanized mouse model that allows EBV-infected B cells to interact with CD4 T cells (the major source of CD40 ligand). Here we examined whether the EBV LMP2A protein, which mimics constitutively active B cell receptor signaling, is required for EBV-induced lymphomas in this model. We find that the deletion of LMP2A delays the onset of EBV-induced lymphomas but does not affect the tumor phenotype or the number of tumors. The simultaneous deletion of both LMP1 and LMP2A results in fewer tumors and a further delay in tumor onset. Nevertheless, the LMP1/LMP2A double mutant induces lymphomas in approximately half of the infected animals. These results indicate that neither LMP1 nor LMP2A is absolutely essential for the ability of EBV to induce B cell lymphomas in the cord blood-humanized mouse model, although the simultaneous loss of both LMP1 and LMP2A decreases the proportion of animals developing tumors and increases the time to tumor onset. Thus, the expression of either LMP1 or LMP2A may be sufficient to promote early-onset EBV-induced tumors in this model.IMPORTANCE EBV causes human lymphomas, but few models are available for dissecting how EBV causes lymphomas in vivo in the context of a host immune response. We recently used a newly developed cord blood-humanized mouse model to show that EBV can cooperate with human CD4 T cells to cause B cell lymphomas even when a major viral transforming protein, LMP1, is deleted. Here we examined whether the EBV protein LMP2A, which mimics B cell receptor signaling, is required for EBV-induced lymphomas in this model. We find that the deletion of LMP2A alone has little effect on the ability of EBV to cause lymphomas but delays tumor onset. The deletion of both LMP1 and LMP2A results in a smaller number of lymphomas in infected animals, with an even more delayed time to tumor onset. These results suggest that LMP1 and LMP2A collaborate to promote early-onset lymphomas in this model, but neither protein is absolutely essential.


Subject(s)
Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/physiology , Lymphoma, Large B-Cell, Diffuse/virology , Viral Matrix Proteins/physiology , Animals , Cell Transformation, Neoplastic , Cells, Cultured , Epstein-Barr Virus Infections/immunology , Gene Knockout Techniques , Humans , Lymphocytes, Tumor-Infiltrating/physiology , Lymphoma, Large B-Cell, Diffuse/immunology , Mice, Inbred NOD , Mice, SCID
16.
Prostate ; 77(7): 812-821, 2017 May.
Article in English | MEDLINE | ID: mdl-28181678

ABSTRACT

BACKGROUND: The androgen receptor (AR) is a key oncogenic driver of prostate cancer, and has been the primary focus of prostate cancer treatment for several decades. We have previously demonstrated that the AR is also an immunological target antigen, recognized in patients with prostate cancer, and targetable by means of vaccines in rodent models with delays in prostate tumor growth. The current study was performed to determine the safety and immunological efficacy of a GMP-grade plasmid DNA vaccine encoding the ligand-binding domain (LBD) of the AR, pTVG-AR. METHODS: Groups of male mice (n = 6-10 per group) were evaluated after four or seven immunizations, using different schedules and inclusion of GM-CSF as a vaccine adjuvant. Animals were assessed for toxicity using gross observations, pathological analysis, and analysis of serum chemistries. Animals were analyzed for evidence of vaccine-augmented immunity by tetramer analysis. Survival studies using different immunization schedules and inclusion of GM-CSF were conducted in an autochthonous genetically engineered mouse model. RESULTS: No significant toxicities were observed in terms of animal weights, histopathology, hematological changes, or changes in serum chemistries, although there was a trend to lower serum glucose in animals treated with the vaccine. There was specifically no evidence of toxicity in other tissues that express AR, including liver, muscle, hematopoietic, and brain. Vaccination was found to elicit AR LBD-specific CD8+ T cells. In a subsequent study of tumor-bearing animals, animals treated with vaccine had prolonged survival compared with control-immunized mice. CONCLUSIONS: These studies demonstrate that, in immunocompetent mice expressing the target antigen, immunization with the pTVG-AR vaccine was both safe and effective in eliciting AR-specific cellular immune responses, and prolonged the survival of prostate tumor-bearing mice. These findings support the clinical evaluation of pTVG-AR in patients with recurrent prostate cancer. Prostate 77:812-821, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Prostatic Neoplasms , Receptors, Androgen/immunology , Vaccines, DNA , Adjuvants, Immunologic/administration & dosage , Animals , Male , Mice , Monitoring, Immunologic/methods , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Treatment Outcome , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Vaccines, DNA/immunology
17.
Stem Cells ; 34(7): 1859-71, 2016 07.
Article in English | MEDLINE | ID: mdl-26972179

ABSTRACT

Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its role in adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow (BM) is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced thrombopoietin (TPO) signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while stem cell factor-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias toward myeloid differentiation in MPPs. Although granulocyte macrophage colony-stimulating factor (GM-CSF)-evoked ERK1/2 activation is only moderately decreased in Kras(-/-) myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9-12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras(-/-) BM cells is greatly compromised, which is attributable to defects in the self-renewal of Kras(-/-) HSCs and defects in differentiated hematopoietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. Stem Cells 2016;34:1859-1871.


Subject(s)
Aging/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Cell Compartmentation/drug effects , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cell Survival/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Deletion , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoiesis/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Integrases/metabolism , Mice, Inbred C57BL , Myeloid Progenitor Cells/drug effects , Myeloid Progenitor Cells/metabolism , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Proto-Oncogene Proteins p21(ras)/deficiency
18.
J Biol Chem ; 290(31): 19093-103, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26082490

ABSTRACT

Activating Ras signaling is a major driver in juvenile and the myeloproliferative variant of chronic myelomonocytic leukemia (JMML/MP-CMML). Numerous studies suggest that GM-CSF signaling plays a central role in establishing and maintaining JMML/MP-CMML phenotypes in human and mouse. However, it remains elusive how GM-CSF signaling impacts on JMML/MP-CMML initiation and progression. Here, we investigate this issue in a well characterized MP-CMML model induced by endogenous Nras(G12D/+) mutation. In this model, Nras(G12D/+) hematopoietic stem cells (HSCs) are required to initiate and maintain CMML phenotypes and serve as CMML-initiating cells. We show that the common ß chain of the GM-CSF receptor (ßc) is dispensable for Nras(G12D/+) HSC function; loss of ßc does not affect the expansion, increased self-renewal, or myeloid differentiation bias in Nras(G12D/+) HSCs. Therefore, ßc(-/-) does not abrogate CMML in Nras(G12D/+) mice. However, ßc deficiency indeed significantly reduces Nras(G12D/+)-induced splenomegaly and spontaneous colony formation and prolongs the survival of CMML-bearing mice, suggesting that GM-CSF signaling plays an important role in promoting CMML progression. Together, our results suggest that inhibiting GM-CSF signaling in JMML/MP-CMML patients might alleviate disease symptoms but would not eradicate the disease.


Subject(s)
Cytokine Receptor Common beta Subunit/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Monomeric GTP-Binding Proteins/genetics , Animals , Cells, Cultured , Cytokine Receptor Common beta Subunit/metabolism , Disease Progression , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Histiocytic Sarcoma/genetics , Histiocytic Sarcoma/metabolism , Leukemia, Myelomonocytic, Chronic/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Spleen/pathology
19.
Cancer Immunol Immunother ; 65(8): 897-907, 2016 08.
Article in English | MEDLINE | ID: mdl-27207605

ABSTRACT

Effective uptake of tumor cell-derived antigens by antigen-presenting cells is achieved pre-clinically by in situ labeling of tumor with α-gal glycolipids that bind the naturally occurring anti-Gal antibody. We evaluated toxicity and feasibility of intratumoral injections of α-gal glycolipids as an autologous tumor antigen-targeted immunotherapy in melanoma patients (pts). Pts with unresectable metastatic melanoma, at least one cutaneous, subcutaneous, or palpable lymph node metastasis, and serum anti-Gal titer ≥1:50 were eligible for two intratumoral α-gal glycolipid injections given 4 weeks apart (cohort I: 0.1 mg/injection; cohort II: 1.0 mg/injection; cohort III: 10 mg/injection). Monitoring included blood for clinical, autoimmune, and immunological analyses and core tumor biopsies. Treatment outcome was determined 8 weeks after the first α-gal glycolipid injection. Nine pts received two intratumoral injections of α-gal glycolipids (3 pts/cohort). Injection-site toxicity was mild, and no systemic toxicity or autoimmunity could be attributed to the therapy. Two pts had stable disease by RECIST lasting 8 and 7 months. Tumor nodule biopsies revealed minimal to no change in inflammatory infiltrate between pre- and post-treatment biopsies except for 1 pt (cohort III) with a post-treatment inflammatory infiltrate. Two and four weeks post-injection, treated nodules in 5 of 9 pts exhibited tumor cell necrosis without neutrophilic or lymphocytic inflammatory response. Non-treated tumor nodules in 2 of 4 evaluable pts also showed necrosis. Repeated intratumoral injections of α-gal glycolipids are well tolerated, and tumor necrosis was seen in some tumor nodule biopsies after tumor injection with α-gal glycolipids.


Subject(s)
Glycolipids/metabolism , Injections, Intralesional/methods , Melanoma/drug therapy , Adult , Aged , Feasibility Studies , Female , Humans , Immunotherapy , Male , Middle Aged
20.
Br J Haematol ; 170(1): 56-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25823885

ABSTRACT

A persistently positive positron emission tomography (PET) scan during therapy for diffuse large B-cell lymphoma (DLBCL) is predictive of treatment failure. A response-adapted strategy consisting of an early treatment change to four cycles of R-ICE (rituximab, ifosfamide, carboplatin, etoposide) was studied in the Eastern Cooperative Oncology Group E3404 trial. Previously untreated patients with DLBCL stage III, IV, or bulky II, were eligible. PET scan was performed after three cycles of R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) and scored as positive or negative by central review during the fourth cycle. PET-positive patients received four cycles of R-ICE, PET-negative patients received two more cycles of R-CHOP. A ≥ 45% 2-year progression-free survival (PFS) for mid-treatment PET-positive patients was viewed as promising. Of 74 patients, 16% were PET positive, 79% negative. The PET positivity rate was much lower than the 33% expected. Two-year PFS was 70%; 42% [90% confidence interval (CI), 19-63%] for PET-positives and 76% (90% CI 65-84%) for PET-negatives. Three-year overall survival (OS) was 69% (90% CI 43-85%) and 93% (90% CI 86-97%) for PET-positive and -negative cases, respectively. The 2-year PFS for mid-treatment PET-positive patients intensified to R-ICE was 42%, with a wide confidence interval due to the low proportion of positive mid-treatment PET scans. Treatment modification based on early PET scanning should remain confined to clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Fluorodeoxyglucose F18 , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Lymphoma, Large B-Cell, Diffuse/drug therapy , Positron-Emission Tomography/methods , Adult , Aged , Antibodies, Monoclonal, Murine-Derived/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carboplatin/administration & dosage , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Etoposide/administration & dosage , Humans , Ifosfamide/administration & dosage , Male , Middle Aged , Prednisone/administration & dosage , Prospective Studies , Rituximab , Vincristine/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL