Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nat Immunol ; 22(6): 735-745, 2021 06.
Article in English | MEDLINE | ID: mdl-34017124

ABSTRACT

Regulatory T (Treg) cells are a barrier for tumor immunity and a target for immunotherapy. Using single-cell transcriptomics, we found that CD4+ T cells infiltrating primary and metastatic colorectal cancer and non-small-cell lung cancer are highly enriched for two subsets of comparable size and suppressor function comprising forkhead box protein P3+ Treg and eomesodermin homolog (EOMES)+ type 1 regulatory T (Tr1)-like cells also expressing granzyme K and chitinase-3-like protein 2. EOMES+ Tr1-like cells, but not Treg cells, were clonally related to effector T cells and were clonally expanded in primary and metastatic tumors, which is consistent with their proliferation and differentiation in situ. Using chitinase-3-like protein 2 as a subset signature, we found that the EOMES+ Tr1-like subset correlates with disease progression but is also associated with response to programmed cell death protein 1-targeted immunotherapy. Collectively, these findings highlight the heterogeneity of Treg cells that accumulate in primary tumors and metastases and identify a new prospective target for cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Clonal Hematopoiesis/immunology , Colorectal Neoplasms/immunology , Lung Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Carcinoma, Non-Small-Cell Lung/therapy , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Proliferation/genetics , Chemotherapy, Adjuvant/methods , Chitinases/metabolism , Colectomy , Colon/pathology , Colon/surgery , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Datasets as Topic , Disease Progression , Drug Resistance, Neoplasm/immunology , Female , Flow Cytometry , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic/immunology , Granzymes/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Primary Cell Culture , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA-Seq , Single-Cell Analysis , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism
2.
Nat Immunol ; 16(3): 318-325, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25621826

ABSTRACT

Long noncoding RNAs are emerging as important regulators of cellular functions, but little is known of their role in the human immune system. Here we investigated long intergenic noncoding RNAs (lincRNAs) in 13 subsets of T lymphocytes and B lymphocytes by next-generation sequencing-based RNA sequencing (RNA-seq analysis) and de novo transcriptome reconstruction. We identified over 500 previously unknown lincRNAs and described lincRNA signatures. Expression of linc-MAF-4, a chromatin-associated lincRNA specific to the TH1 subset of helper T cells, was inversely correlated with expression of MAF, a TH2-associated transcription factor. Downregulation of linc-MAF-4 skewed T cell differentiation toward the TH2 phenotype. We identified a long-distance interaction between the genomic regions of the gene encoding linc-MAF-4 and MAF, where linc-MAF-4 associated with the chromatin modifiers LSD1 and EZH2; this suggested that linc-MAF-4 regulated MAF transcription through the recruitment of chromatin modifiers. Our results demonstrate a key role for lincRNA in T lymphocyte differentiation.


Subject(s)
Maf Transcription Factors/genetics , RNA, Long Noncoding/genetics , T-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Down-Regulation/genetics , Down-Regulation/immunology , Humans , Maf Transcription Factors/immunology , RNA, Long Noncoding/immunology , Transcription, Genetic/genetics , Transcription, Genetic/immunology , Transcriptome/genetics , Transcriptome/immunology
3.
Nucleic Acids Res ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271103

ABSTRACT

Transposable elements (TEs) are mobile DNA repeats known to shape the evolution of eukaryotic genomes. In complex organisms, they exhibit tissue-specific transcription. However, understanding their role in cellular diversity across most tissues remains a challenge, when employing single-cell RNA sequencing (scRNA-seq), due to their widespread presence and genetic similarity. To address this, we present IRescue (Interspersed Repeats single-cell quantifier), a software capable of estimating the expression of TE subfamilies at the single-cell level. IRescue incorporates a unique UMI deduplication algorithm to rectify sequencing errors and employs an Expectation-Maximization procedure to effectively redistribute the counts of multi-mapping reads. Our study showcases the precision of IRescue through analysis of both simulated and real single cell and nuclei RNA-seq data from human colorectal cancer, brain, skin aging, and PBMCs during SARS-CoV-2 infection and recovery. By linking the expression patterns of TE signatures to specific conditions and biological contexts, we unveil insights into their potential roles in cellular heterogeneity and disease progression.

4.
Immunity ; 45(5): 1135-1147, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851914

ABSTRACT

Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level. We found that tumor-infiltrating Treg cells were highly suppressive, upregulated several immune-checkpoints, and expressed on the cell surfaces specific signature molecules such as interleukin-1 receptor 2 (IL1R2), programmed death (PD)-1 Ligand1, PD-1 Ligand2, and CCR8 chemokine, which were not previously described on Treg cells. Remarkably, high expression in whole-tumor samples of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8, correlated with poor prognosis. Our findings provide insights into the molecular identity and functions of human tumor-infiltrating Treg cells and define potential targets for tumor immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Colorectal Neoplasms/immunology , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T-Lymphocytes, Regulatory/immunology , Aged , Carcinoma, Non-Small-Cell Lung/mortality , Cell Separation , Colorectal Neoplasms/mortality , Female , Flow Cytometry , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Male , Middle Aged , Polymerase Chain Reaction , Prognosis , Transcriptome
5.
Hum Genet ; 143(6): 775-795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874808

ABSTRACT

NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.


Subject(s)
Chromosome Deletion , Epigenesis, Genetic , Haploinsufficiency , Neurofibromatosis 1 , Humans , Neurofibromatosis 1/genetics , Female , Male , Neurofibromin 1/genetics , Chromosomes, Human, Pair 17/genetics , Phenotype , Child , Promoter Regions, Genetic
6.
J Neurosci ; 42(18): 3689-3703, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35351830

ABSTRACT

Recent branching (100 MYA) of the mammalian evolutionary tree has enhanced brain complexity and functions at the putative cost of increased emotional circuitry vulnerability. Thus, to better understand psychopathology, a burden for the modern society, novel approaches should exploit evolutionary aspects of psychiatric-relevant molecular pathways. A handful of genes is nowadays tightly associated to psychiatric disorders. Among them, neuronal-enriched RbFOX1 modifies the activity of synaptic regulators in response to neuronal activity, keeping excitability within healthy domains. We here dissect a higher primates-restricted interaction between RbFOX1 and the transcriptional corepressor Lysine Specific Demethylase 1 (LSD1/KDM1A). A single nucleotide variation (AA to AG) in LSD1 gene appeared in higher primates and humans, endowing RbFOX1 with the ability to promote the alternative usage of a novel 3' AG splice site, which extends LSD1 exon E9 in the upstream intron (E9-long). Exon E9-long regulates LSD1 levels by Nonsense-Mediated mRNA Decay. As reintroduction of the archaic LSD1 variant (AA) abolishes E9-long splicing, the novel 3' AG splice site is necessary for RbFOX1 to control LSD1 levels. LSD1 is a homeostatic immediate early genes (IEGs) regulator playing a relevant part in environmental stress-response. In primates and humans, inclusion of LSD1 as RbFOX1 target provides RbFOX1 with the additional ability to regulate the IEGs. These data, together with extensive RbFOX1 involvement in psychiatric disorders and its stress-dependent regulation in male mice, suggest the RbFOX1-LSD1-IEGs axis as an evolutionary recent psychiatric-relevant pathway. Notably, outside the nervous system, RbFOX2-dependent LSD1 modulation could be a candidate deregulated mechanism in cancer.SIGNIFICANCE STATEMENT To be better understood, anxiety and depression need large human genetics studies aimed at further resolving the often ambiguous, aberrant neuronal pathomechanisms that impact corticolimbic circuitry physiology. Several genetic associations of the alternative splicing regulator RbFOX1 with psychiatric conditions suggest homeostatic unbalance as a neuronal signature of psychopathology. Here we move a step forward, characterizing a disease-relevant higher primates-specific pathway by which RbFOX1 acquires the ability to regulate neuronal levels of Lysine Specific Demethylase 1, an epigenetic modulator of environmental stress response. Thus, two brain-enriched enzymes, independently shown to homeostatically protect neurons with a clear readout in terms of emotional behavior in lower mammals, establish in higher primates and humans a new functional cooperation enhancing the complexity of environmental adaptation and stress vulnerability.


Subject(s)
Alternative Splicing , Lysine , Alternative Splicing/genetics , Animals , Brain/metabolism , Histone Demethylases/genetics , Humans , Lysine/metabolism , Male , Mammals , Mice , Primates , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Repressor Proteins/genetics
7.
Eur J Immunol ; 52(1): 109-122, 2022 01.
Article in English | MEDLINE | ID: mdl-34333764

ABSTRACT

Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19, which negatively affects T-cell activation. The presence of effector T cells in patients with mild disease and dysfunctional T cells in severely ill patients suggests that adequate T-cell responses limit disease severity. Understanding how cDCs cope with SARS-CoV-2 can help elucidate how protective immune responses are generated. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures, with the upregulation of IFN-stimulated genes and IL-6 signaling pathways. Furthermore, comparison of cDCs between patients with severe and mild disease showed severely ill patients to exhibit profound downregulation of genes encoding molecules involved in antigen presentation, such as MHCII, TAP, and costimulatory proteins, whereas we observed the opposite for proinflammatory molecules, such as complement and coagulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation of anti-apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the virus in vitro recapitulated the activation profile observed in vivo. Our findings suggest that SARS-CoV-2 interacts directly with cDC2s and implements an efficient immune escape mechanism that correlates with disease severity by downregulating crucial molecules required for T-cell activation.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Humans
8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768929

ABSTRACT

The genome is no longer deemed as a fixed and inert item but rather as a moldable matter that is continuously evolving and adapting. Within this frame, Transposable Elements (TEs), ubiquitous, mobile, repetitive elements, are considered an alive portion of the genomes to date, whose functions, although long considered "dark", are now coming to light. Here we will review that, besides the detrimental effects that TE mobilization can induce, TEs have shaped genomes in their current form, promoting genome sizing, genomic rearrangements and shuffling of DNA sequences. Although TEs are mostly represented in the genomes by evolutionarily old, short, degenerated, and sedentary fossils, they have been thoroughly co-opted by the hosts as a prolific and original source of regulatory instruments for the control of gene transcription and genome organization in the nuclear space. For these reasons, the deregulation of TE expression and/or activity is implicated in the onset and progression of several diseases. It is likely that we have just revealed the outermost layers of TE functions. Further studies on this portion of the genome are required to unlock novel regulatory functions that could also be exploited for diagnostic and therapeutic approaches.


Subject(s)
DNA Transposable Elements , Gene Expression Regulation , DNA Transposable Elements/genetics , Genome Size , Reading Frames , Evolution, Molecular
9.
Eur J Immunol ; 51(12): 3243-3246, 2021 12.
Article in English | MEDLINE | ID: mdl-34528258

ABSTRACT

Ex vivo gene expression and miRNA profiling of Eomes+ Tr1-like cells suggested that they represent a differentiation stage that is intermediate between Th1-cells and cytotoxic CD4+ T-cells. Several microRNAs were downregulated in Eomes+ Tr1-like cells that might inhibit Tr1-cell differentiation. In particular, miR-92a targeted Eomes, while miR-125a inhibited IFN-g and IL-10R expression.


Subject(s)
Gene Expression Profiling , MicroRNAs/immunology , Receptors, Interleukin-10/immunology , T-Box Domain Proteins/immunology , Th1 Cells/immunology , Humans
10.
Proc Natl Acad Sci U S A ; 115(28): E6546-E6555, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941600

ABSTRACT

The tumor microenvironment restrains conventional T cell (Tconv) activation while facilitating the expansion of Tregs. Here we showed that Tregs' advantage in the tumor milieu relies on supplemental energetic routes involving lipid metabolism. In murine models, tumor-infiltrating Tregs displayed intracellular lipid accumulation, which was attributable to an increased rate of fatty acid (FA) synthesis. Since the relative advantage in glucose uptake may fuel FA synthesis in intratumoral Tregs, we demonstrated that both glycolytic and oxidative metabolism contribute to Tregs' expansion. We corroborated our data in human tumors showing that Tregs displayed a gene signature oriented toward glycolysis and lipid synthesis. Our data support a model in which signals from the tumor microenvironment induce a circuitry of glycolysis, FA synthesis, and oxidation that confers a preferential proliferative advantage to Tregs, whose targeting might represent a strategy for cancer treatment.


Subject(s)
Fatty Acids/immunology , Glycolysis/immunology , Neoplasms, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/immunology , Fatty Acids/genetics , Humans , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Oxidation-Reduction , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment/genetics
11.
Eur J Immunol ; 49(1): 96-111, 2019 01.
Article in English | MEDLINE | ID: mdl-30431161

ABSTRACT

Whether human IL-10-producing regulatory T cells ("Tr1") represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4+ T-cell subsets, including conventional cytotoxic CD4+ T cells. They expressed Granzyme (Gzm) K, but had lost CD40L and IL-7R expression. Eomes antagonized the Th17 fate, and directly controlled IFN-γ and GzmK expression. However, Eomes binding to the IL-10 promoter was not detectable in human CD4+ T cells, presumably because critical Tbox binding sites of the mouse were not conserved. A precommitment to a Tr1-like fate, i.e. concominant induction of Eomes, GzmK, and IFN-γ, was promoted by IL-4 and IL-12-secreting myeloid dendritic cells. Consistently, Th1 effector memory cells contained precommitted Eomes+ GzmK+ T cells. Stimulation with T-cell receptor (TCR) agonists and IL-27 promoted the generation of Tr1-like effector cells by inducing switching from CD40L to IL-10. Importantly, CD4+ Eomes+ T-cell subsets were present in lymphoid and nonlymphoid tissues, and their frequencies varied systemically in patients with inflammatory bowel disease and graft-versus-host disease. We propose that Eomes+ Tr1-like cells are effector cells of a unique GzmK-expressing CD4+ T-cell subset.


Subject(s)
Graft vs Host Disease/immunology , Inflammatory Bowel Diseases/immunology , T-Box Domain Proteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Gene Expression Regulation , Granzymes/metabolism , Humans , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-10/metabolism , Mice , T-Box Domain Proteins/genetics
12.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32366056

ABSTRACT

: Transposable elements (TEs), which cover ~45% of the human genome, although firstly considered as "selfish" DNA, are nowadays recognized as driving forces in eukaryotic genome evolution. This capability resides in generating a plethora of sophisticated RNA regulatory networks that influence the cell type specific transcriptome in health and disease. Indeed, TEs are transcribed and their RNAs mediate multi-layered transcriptional regulatory functions in cellular identity establishment, but also in the regulation of cellular plasticity and adaptability to environmental cues, as occurs in the immune response. Moreover, TEs transcriptional deregulation also evolved to promote pathogenesis, as in autoimmune and inflammatory diseases and cancers. Importantly, many of these findings have been achieved through the employment of Next Generation Sequencing (NGS) technologies and bioinformatic tools that are in continuous improvement to overcome the limitations of analyzing TEs sequences. However, they are highly homologous, and their annotation is still ambiguous. Here, we will review some of the most recent findings, questions and improvements to study at high resolution this intriguing portion of the human genome in health and diseases, opening the scenario to novel therapeutic opportunities.


Subject(s)
DNA Transposable Elements/genetics , Genome, Human/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans
13.
J Lipid Res ; 60(6): 1144-1153, 2019 06.
Article in English | MEDLINE | ID: mdl-30918065

ABSTRACT

Dyslipidemia and altered iron metabolism are typical features of nonalcoholic fatty liver disease (NAFLD). Proprotein convertase subtilisin/kexin type 7 (PCSK7) gene variation has been associated with circulating lipids and liver damage during iron overload. The aim of this study was to examine the impact of the PCSK7 rs236918 variant on NAFLD-related traits in 1,801 individuals from the Liver Biopsy Cohort (LBC), 500,000 from the UK Biobank Cohort (UKBBC), and 4,580 from the Dallas Heart Study (DHS). The minor PCSK7 rs236918 C allele was associated with higher triglycerides, aminotransferases, and hepatic inflammation in the LBC (P < 0.05) and with hypercholesterolemia and liver disease in the UKBBC. In the DHS, PCSK7 missense variants were associated with circulating lipids. PCSK7 was expressed in hepatocytes and its hepatic expression correlated with that of lipogenic genes (P < 0.05). The rs236918 C allele was associated with upregulation of a new "intra-PCSK7" long noncoding RNA predicted to interact with the protein, higher hepatic and circulating PCSK7 protein (P < 0.01), which correlated with triglycerides (P = 0.04). In HepG2 cells, PCSK7 deletion reduced lipogenesis, fat accumulation, inflammation, transforming growth factor ß pathway activation, and fibrogenesis. In conclusion, PCSK7 gene variation is associated with dyslipidemia and more severe liver disease in high risk individuals, likely by modulating PCSK7 expression/activity.


Subject(s)
Dyslipidemias/metabolism , Metabolic Diseases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Subtilisins/metabolism , Adult , Animals , Cross-Sectional Studies , Dyslipidemias/genetics , Female , Genotype , Hep G2 Cells , Hepatocytes/metabolism , Humans , Linkage Disequilibrium/genetics , Linkage Disequilibrium/physiology , Lipogenesis/genetics , Lipogenesis/physiology , Male , Metabolic Diseases/genetics , Middle Aged , Non-alcoholic Fatty Liver Disease/genetics , Subtilisins/genetics
14.
J Allergy Clin Immunol ; 142(5): 1537-1547.e8, 2018 11.
Article in English | MEDLINE | ID: mdl-29369775

ABSTRACT

BACKGROUND: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (TR1) cells but is also produced by CD25+ regulatory T (Treg) cells. OBJECTIVE: We aimed to identify and characterize human intestinal TR1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs). METHODS: CD4+ T cells isolated from the intestinal lamina propria of human subjects and mice were analyzed for phenotype, cytokine production, and suppressive capacities. Intracellular IL-10 expression by CD4+ T-cell subsets in the inflamed guts of patients with IBD (Crohn disease or ulcerative colitis) was compared with that in cells from noninflamed control subjects. Finally, the effects of proinflammatory cytokines on T-cell IL-10 expression were analyzed, and IL-1ß and IL-23 responsiveness was assessed. RESULTS: Intestinal TR1 cells could be identified by coexpression of CCR5 and programmed cell death protein 1 (PD-1) in human subjects and mice. CCR5+PD-1+ TR1 cells expressed IFN-γ and efficiently suppressed T-cell proliferation and transfer colitis. Intestinal IFN-γ+ TR1 cells, but not IL-7 receptor-positive TH cells or CD25+ Treg cells, showed lower IL-10 expression in patients with IBDs. TR1 cells were responsive to IL-23, and IFN-γ+ TR1 cells downregulated IL-10 with IL-1ß and IL-23. Conversely, CD25+ Treg cells expressed higher levels of IL-1 receptor but showed stable IL-10 expression. CONCLUSIONS: We provide the first ex vivo characterization of human intestinal TR1 cells. Selective downregulation of IL-10 by IFN-γ+ TR1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.


Subject(s)
Cytokines/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Programmed Cell Death 1 Receptor/immunology , Receptors, CCR5/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Animals , Cells, Cultured , Colonic Neoplasms/immunology , Female , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Young Adult
15.
J Allergy Clin Immunol ; 140(3): 797-808, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28237728

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. OBJECTIVE: We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. METHODS: We analyzed CD4+ helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. RESULTS: TH1/TH17 central memory (TH1/TH17CM) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. TH1/TH17CM cells were closely related to conventional TH17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing TH1 and TH1/TH17 subsets. However, while TH1 cells responded consistently to viruses, TH1/TH17CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive TH1/TH17CM cells but also blocked virus-specific TH1 cells. CONCLUSIONS: We propose that autoreactive TH1/TH17CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas TH1 cells perform immune surveillance. Thus the selective targeting of TH1/TH17 cells could inhibit relapses without causing John Cunningham virus-dependent progressive multifocal encephalomyelitis.


Subject(s)
Antigens, Viral/immunology , Autoantigens/immunology , JC Virus/immunology , Multiple Sclerosis/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Adult , Cytokines/cerebrospinal fluid , Cytokines/immunology , Female , Fingolimod Hydrochloride/therapeutic use , Gene Expression , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Natalizumab/therapeutic use
16.
Nucleic Acids Res ; 43(W1): W487-92, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25897123

ABSTRACT

The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org.


Subject(s)
MicroRNAs/chemistry , Molecular Sequence Annotation , Software , Terminology as Topic , Internet , MicroRNAs/metabolism
17.
Nat Commun ; 15(1): 6534, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095390

ABSTRACT

Huntington's disease (HD) causes selective degeneration of striatal and cortical neurons, resulting in cell mosaicism of coexisting still functional and dysfunctional cells. The impact of non-cell autonomous mechanisms between these cellular states is poorly understood. Here we generated telencephalic organoids with healthy or HD cells, grown separately or as mosaics of the two genotypes. Single-cell RNA sequencing revealed neurodevelopmental abnormalities in the ventral fate acquisition of HD organoids, confirmed by cytoarchitectural and transcriptional defects leading to fewer GABAergic neurons, while dorsal populations showed milder phenotypes mainly in maturation trajectory. Healthy cells in mosaic organoids restored HD cell identity, trajectories, synaptic density, and communication pathways upon cell-cell contact, while showing no significant alterations when grown with HD cells. These findings highlight cell-type-specific alterations in HD and beneficial non-cell autonomous effects of healthy cells, emphasizing the therapeutic potential of modulating cell-cell communication in disease progression and treatment.


Subject(s)
Huntington Disease , Organoids , Phenotype , Telencephalon , Huntington Disease/pathology , Huntington Disease/genetics , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Animals , Telencephalon/pathology , Telencephalon/cytology , Telencephalon/metabolism , Humans , Mice , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Single-Cell Analysis , Cell Communication , Mosaicism , Neurons/metabolism , Neurons/pathology
18.
J Crohns Colitis ; 17(12): 1988-2001, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37462681

ABSTRACT

IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.


Subject(s)
Crohn Disease , Escherichia coli Infections , Humans , Crohn Disease/pathology , Escherichia coli , Th17 Cells/pathology , Tumor Necrosis Factor Inhibitors , Intestines/pathology , Inflammation/pathology , Escherichia coli Infections/complications , Escherichia coli Infections/pathology , Interleukin-23 , Intestinal Mucosa/pathology , Bacterial Adhesion
19.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792589

ABSTRACT

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Subject(s)
Melanoma , Monocytes , Mice , Animals , Monocytes/metabolism , Cell Differentiation , Cholesterol/metabolism , Antigen Presentation , Dendritic Cells/metabolism , Tumor Microenvironment
20.
PLoS Comput Biol ; 7(5): e1002056, 2011 May.
Article in English | MEDLINE | ID: mdl-21637798

ABSTRACT

E2 ubiquitin-conjugating enzymes are crucial mediators of protein ubiquitination, which strongly influence the ultimate fate of the target substrates. Recently, it has been shown that the activity of several enzymes of the ubiquitination pathway is finely tuned by phosphorylation, an ubiquitous mechanism for cellular regulation, which modulates protein conformation. In this contribution, we provide the first rationale, at the molecular level, of the regulatory mechanism mediated by casein kinase 2 (CK2) phosphorylation of E2 Cdc34-like enzymes. In particular, we identify two co-evolving signature elements in one of the larger families of E2 enzymes: an acidic insertion in ß4α2 loop in the proximity of the catalytic cysteine and two conserved key serine residues within the catalytic domain, which are phosphorylated by CK2. Our investigations, using yeast Cdc34 as a model, through 2.5 µs molecular dynamics simulations and biochemical assays, define these two elements as an important phosphorylation-controlled switch that modulates opening and closing of the catalytic cleft. The mechanism relies on electrostatic repulsions between a conserved serine phosphorylated by CK2 and the acidic residues of the ß4α2 loop, promoting E2 ubiquitin charging activity. Our investigation identifies a new and unexpected pivotal role for the acidic loop, providing the first evidence that this loop is crucial not only for downstream events related to ubiquitin chain assembly, but is also mandatory for the modulation of an upstream crucial step of the ubiquitin pathway: the ubiquitin charging in the E2 catalytic cleft.


Subject(s)
Saccharomyces cerevisiae Proteins/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , Humans , Molecular Dynamics Simulation , Molecular Sequence Annotation , Molecular Sequence Data , Phosphorylation , Principal Component Analysis , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Thermodynamics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL