Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Blood ; 139(9): 1289-1301, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34521108

ABSTRACT

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding antimyeloma idiotype (Id)-keyhole limpet hemocyanin (KLH) vaccine to vaccine-specific costimulated T cells. In this randomized phase 2 trial, patients received either control (KLH only) or Id-KLH vaccine, autologous transplantation, vaccine-specific costimulated T cells expanded ex vivo, and 2 booster doses of assigned vaccine. In 36 patients (KLH, n = 20; Id-KLH, n = 16), no dose-limiting toxicity was seen. At last evaluation, 6 (30%) and 8 patients (50%) had achieved complete remission in KLH-only and Id-KLH arms, respectively (P = .22), and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; P = .32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with patients receiving KLH only, there was a greater change in IR genes in T cells in those receiving Id-KLH relative to baseline. Specifically, upregulation of genes associated with activation, effector function induction, and memory CD8+ T-cell generation after Id-KLH but not after KLH control vaccination was observed. Similarly, in responding patients across both arms, upregulation of genes associated with T-cell activation was seen. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of patients receiving Id-KLH. In conclusion, in this combination immunotherapy approach, we observed significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies. This trial was registered at www.clinicaltrials.gov as #NCT01426828.


Subject(s)
Adoptive Transfer , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cancer Vaccines/administration & dosage , Memory T Cells , Multiple Myeloma , Vaccination , Autografts , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cancer Vaccines/immunology , Disease-Free Survival , Female , Hemocyanins/administration & dosage , Hemocyanins/immunology , Humans , Male , Memory T Cells/immunology , Memory T Cells/transplantation , Multiple Myeloma/immunology , Multiple Myeloma/mortality , Multiple Myeloma/therapy , Survival Rate , Transplantation, Autologous
2.
Nat Med ; 20(6): 676-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24859530

ABSTRACT

Immune evasion is an emerging hallmark of cancer progression. However, functional studies to understand the role of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment are limited by the lack of available specific cell surface markers. We adapted a competitive peptide phage display platform to identify candidate peptides binding MDSCs specifically and generated peptide-Fc fusion proteins (peptibodies). In multiple tumor models, intravenous peptibody injection completely depleted blood, splenic and intratumoral MDSCs in tumor-bearing mice without affecting proinflammatory immune cell types, such as dendritic cells. Whereas control Gr-1-specific antibody primarily depleted granulocytic MDSCs, peptibodies depleted both granulocytic and monocytic MDSC subsets. Peptibody treatment was associated with inhibition of tumor growth in vivo, which was superior to that achieved with Gr-1-specific antibody. Immunoprecipitation of MDSC membrane proteins identified S100 family proteins as candidate targets. Our strategy may be useful to identify new diagnostic and therapeutic surface targets on rare cell subtypes, including human MDSCs.


Subject(s)
Myeloid Cells/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Recombinant Fusion Proteins/pharmacology , Tumor Escape/physiology , Tumor Microenvironment/immunology , Animals , Immunoprecipitation , Mice , Myeloid Cells/drug effects , Peptide Library , Receptors, Cell Surface/immunology , S100 Proteins/metabolism , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL