Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Drug Dev Ind Pharm ; 50(3): 236-247, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38318700

ABSTRACT

CONTEXT: Determining solubility of drugs is laborious and time-consuming process that may not yield meaningful results. Amorphous solid dispersion (ASD) is a widely used solubility enhancement technique. Predictive models could streamline this process and accelerate the development of oral drugs with improved aqueous solubilities. OBJECTIVE: This study aimed to develop a predictive model to estimate the solubility of a compound from the ASDs in polymer matrices. METHODS: ASDs of model drugs (acetazolamide, chlorothiazide, furosemide, hydrochlorothiazide, sulfamethoxazole) with model polymers (PVP, PVPVA, HPMC E5, Soluplus) and a surfactant (TPGS) were prepared using hotmelt process. The prepared ASDs were characterized using DSC, FTIR, and XRD. The aqueous solubility of the model drugs was determined using shake-flask method. Multiple linear regression was used to develop a predictive model to determine aqueous solubility using the molecular descriptors of the drug and polymer as predictor variables. The model was validated using Leave-One-Out Cross-Validation. RESULTS: The ASDs' drug components were identified as amorphous via DSC and XRD Studies. There were no significant chemical interactions between the model drugs and the polymers based on FTIR studies. The ASDs showed a significant (p < 0.05) improvement in solubility, ranging from a 3-fold to 118-fold, compared with the pure drug. The developed empirical model predicted the solubility of the model drugs from the ASDs containing model polymer matrices with an accuracy greater than 80%. CONCLUSION: The developed empirical model demonstrated robustness and predicted the aqueous solubility of model drugs from the ASDs of model polymer matrices with an accuracy greater than 80%.


Subject(s)
Polymers , Water , Solubility , Crystallization , Polymers/chemistry , Water/chemistry , Surface-Active Agents
2.
Eur J Pediatr ; 182(10): 4407-4420, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37486410

ABSTRACT

This study aimed to evaluate ceftriaxone pharmacokinetics that affects the achievement of targets in the treatment of critically ill children (meningitis, pneumonia, urinary tract infection, peritonitis, and infective endocarditis( who were admitted to Zagazig University Pediatric hospital in Egypt to monitor for the drug adverse effects.Blood samples were obtained from 24 hospitalized pediatric patients (ages ranging from 2.5 months to 12 years) after administering the calculated dose of ceftriaxone via intravenous bolus route. Then, ceftriaxone plasma concentrations were measured using a validated HPLC method with ultraviolet detection. The pharmacokinetic analysis was conducted using Phoenix Winnonlin Program® software.Data for total and free ceftriaxone best fitted on a one-compartment model with the first-order elimination process. Clearance of ceftriaxone is reduced for patients with reduced kidney function and increased with those with augmented renal clearance. The volume of distribution and the free fraction are increased in these patients, especially those with hypoalbuminemia with a shorter half-life time were detected. A slight increase in total bilirubin and liver enzymes has been observed after treatment with ceftriaxone in these patients.   Conclusion: In most critically ill pediatric patients, the current ceftriaxone treatment regimen (50 to 100 mg/kg) offers adequate pathogenic coverage. The clearance of free ceftriaxone in all patients correlates well with their renal function (eGFR), with r2 = 0.7252. During therapy with ceftriaxone at all doses ranging from 50 to 100 mg/kg, a rise in total bilirubin was observed in these patients. Moreover, liver enzymes (ALT and AST) increased moderately (p 0.0001). So, it is recommended to monitor total bilirubin and liver enzymes during the treatment with ceftriaxone, especially for a long duration (more than 5 days) or use another agent in patients with high baseline values. What is Known: • The dosing regimen of ceftriaxone (50 to 100 mg/kg) provided optimum therapeutic outcomes. • Some studies show data for total and free Ceftriaxone best fitted on a one-compartment model while other studies show data for total and free Ceftriaxone best fitted on a two-compartment model. What is New: • Up to my knowledge this is the first study ,considering individual pharmacokinetic analysis, conducted on hospitalized Egyptian pediatric population most of them with reduced kidney function with ages ranging from 2.5 months to 12 years. Data for total and free Ceftriaxone best fitted on a one-compartment model with linear clearance of the free ceftriaxone. • In all patients, total bilirubin and liver function tests were mildly increased, making them at risk for cholestasis or ceftriaxone-induced cholestatic hepatitis.


Subject(s)
Anti-Bacterial Agents , Ceftriaxone , Humans , Child , Ceftriaxone/pharmacokinetics , Ceftriaxone/therapeutic use , Anti-Bacterial Agents/therapeutic use , Egypt , Critical Illness , Bilirubin
SELECTION OF CITATIONS
SEARCH DETAIL