Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Breast Cancer Res ; 26(1): 113, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965558

ABSTRACT

GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers. In most cases, Gα12 and Gα13, as closely related α-subunits in the subfamily, have similar cellular roles. However, in recent years their differences in signaling and function have started to emerge. We previously identified that Gα13 drives invasion of Triple Negative Breast Cancer (TNBC) cells in vitro. As a highly heterogenous disease with various well-defined molecular subtypes (ER+ /Her2-, ER+ /Her2+, Her2+, TNBC) and subtype associated outcomes, the function(s) of Gα13 beyond TNBC should be explored. Here, we report the finding that low expression of GNA13 is predictive of poorer survival in breast cancer, which challenges the conventional idea of Gα12/13 being universal oncogenes in solid tumors. Consistently, we found that Gα13 suppresses the proliferation in multiple ER+ breast cancer cell lines (MCF-7, ZR-75-1 and T47D). Loss of GNA13 expression drives cell proliferation, soft-agar colony formation and in vivo tumor formation in an orthotopic xenograft model. To evaluate the mechanism of Gα13 action, we performed RNA-sequencing analysis on these cell lines and found that loss of GNA13 results in the upregulation of MYC signaling pathways in ER+ breast cancer cells. Simultaneous silencing of MYC reversed the proliferative effect from the loss of GNA13, validating the role of MYC in Gα13 regulation of proliferation. Further, we found Gα13 regulates the expression of MYC, at both the transcript and protein level in an ERα dependent manner. Taken together, our study provides the first evidence for a tumor suppressive role for Gα13 in breast cancer cells and demonstrates for the first time the direct involvement of Gα13 in ER-dependent regulation of MYC signaling. With a few exceptions, elevated Gα13 levels are generally considered to be oncogenic, similar to Gα12. This study demonstrates an unexpected tumor suppressive role for Gα13 in ER+ breast cancer via regulation of MYC, suggesting that Gα13 can have subtype-dependent tumor suppressive roles in breast cancer.


Subject(s)
Cell Proliferation , Estrogen Receptor alpha , GTP-Binding Protein alpha Subunits, G12-G13 , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc , Humans , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Female , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Animals , Cell Line, Tumor , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Signal Transduction , Up-Regulation
2.
J Biol Chem ; 294(48): 18192-18206, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31636124

ABSTRACT

GNA13, the α subunit of a heterotrimeric G protein, mediates signaling through G-protein-coupled receptors (GPCRs). GNA13 is up-regulated in many solid tumors, including prostate cancer, where it contributes to tumor initiation, drug resistance, and metastasis. To better understand how GNA13 contributes to tumorigenesis and tumor progression, we compared the entire transcriptome of PC3 prostate cancer cells with those cells in which GNA13 expression had been silenced. This analysis revealed that GNA13 levels affected multiple CXC-family chemokines. Further investigation in three different prostate cancer cell lines singled out pro-tumorigenic CXC motif chemokine ligand 5 (CXCL5) as a target of GNA13 signaling. Elevation of GNA13 levels consistently induced CXCL5 RNA and protein expression in all three cell lines. Analysis of the CXCL5 promoter revealed that the -505/+62 region was both highly active and influenced by GNA13, and a single NF-κB site within this region of the promoter was critical for GNA13-dependent promoter activity. ChIP experiments revealed that, upon induction of GNA13 expression, occupancy at the CXCL5 promoter was significantly enriched for the p65 component of NF-κB. GNA13 knockdown suppressed both p65 phosphorylation and the activity of a specific NF-κB reporter, and p65 silencing impaired the GNA13-enhanced expression of CXCL5. Finally, blockade of Rho GTPase activity eliminated the impact of GNA13 on NF-κB transcriptional activity and CXCL5 expression. Together, these findings suggest that GNA13 drives CXCL5 expression by transactivating NF-κB in a Rho-dependent manner in prostate cancer cells.


Subject(s)
Chemokine CXCL5/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction , Transcription Factor RelA/metabolism , Transcriptional Activation , Chemokine CXCL5/genetics , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Humans , Male , Neoplasm Proteins/genetics , PC-3 Cells , Prostatic Neoplasms/genetics , Transcription Factor RelA/genetics
3.
Mol Cancer ; 14: 67, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25889182

ABSTRACT

BACKGROUND: Gα13 (GNA13) is the α subunit of a heterotrimeric G protein that mediates signaling through specific G protein-coupled receptors (GPCRs). Our recent study showed that control of GNA13 expression by specific microRNAs (miRNAs or miRs) is important for prostate cancer cell invasion. However, little is known about the control of GNA13 expression in breast cancers. This project was carried out to determine (i) whether enhanced GNA13 expression is important for breast cancer cell invasion, and (ii) if so, the mechanism of deregulation of GNA13 expression in breast cancers. METHODS: To determine the probable miRNAs regulating GNA13, online miRNA target prediction tool Targetscan and Luciferase assays with GNA13-3'-UTR were used. Effect of miRNAs on GNA13 mRNA, protein and invasion was studied using RT-PCR, western blotting and in vitro Boyden chamber assay respectively. Cell proliferation was done using MTT assays. RESULTS: Overexpression of GNA13 in MCF-10a cells induced invasion, whereas knockdown of GNA13 expression in MDA-MB-231 cells inhibited invasion. Expression analysis of miRNAs predicted to bind the 3'-UTR of GNA13 revealed that miR-31 exhibited an inverse correlation to GNA13 protein expression in breast cancer cells. Ectopic expression of miR-31 in MDA-MB-231 cells significantly reduced GNA13 mRNA and protein levels, as well as GNA13-3'-UTR-reporter activity. Conversely, blocking miR-31 activity in MCF-10a cells induced GNA13 mRNA, protein and 3'-UTR reporter activity. Further, expression of miR-31 significantly inhibited MDA-MB-231 cell invasion, and this effect was partly rescued by ectopic expression of GNA13 in these cells. Examination of 48 human breast cancer tissues revealed that GNA13 mRNA levels were inversely correlated to miR-31 levels. CONCLUSIONS: These data provide strong evidence that GNA13 expression in breast cancer cells is regulated by post-transcriptional mechanisms involving miR-31. Additionally our data shows that miR-31 regulates breast cancer cell invasion partially via targeting GNA13 expression in breast cancer cells. Loss of miR-31 expression and increased GNA13 expression could be used as biomarkers of breast cancer progression.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , 3' Untranslated Regions/genetics , Activating Transcription Factor 6 , Biomarkers, Tumor/genetics , Breast/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Humans , Neoplasm Invasiveness/pathology , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics
4.
J Biol Chem ; 288(11): 7986-7995, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23329838

ABSTRACT

G protein-coupled receptors (GPCRs) and their ligands have been implicated in progression and metastasis of several cancers. GPCRs signal through heterotrimeric G proteins, and among the different types of G proteins, GNA12/13 have been most closely linked to tumor progression. In this study, we explored the role of GNA13 in prostate cancer cell invasion and the mechanism of up-regulation of GNA13 in these cells. An initial screen for GNA13 protein expression showed that GNA13 is highly expressed in the most aggressive cancer cell lines. Knockdown of GNA13 in highly invasive PC3 cells revealed that these cells depend on GNA13 expression for their invasion, migration, and Rho activation. As mRNA levels in these cells did not correlate with protein levels, we assessed the potential involvement of micro-RNAs (miRNAs) in post-transcriptional control of GNA13 expression. Expression analysis of miRNAs predicted to bind the 3'-UTR of GNA13 revealed that miR-182 and miR-141/200a showed an inverse correlation to the protein expression in LnCAP and PC3 cells. Ectopic expression of miR-182 and miR-141/200a in PC3 cells significantly reduced protein levels, GNA13-3'-UTR reporter activity and in vitro invasion of these cells. This effect was blocked by restoration of GNA13 expression in these cells. Importantly, inhibition of miR-182 and miR-141/200a in LnCAP cells using specific miRNA inhibitors elevated the expression of GNA13 and enhanced invasion of these cells. These data provide strong evidence that GNA13 is an important mediator of prostate cancer cell invasion, and that miR-182 and miR-200 family members regulate its expression post-transcriptionally.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Chemokine CXCL12/metabolism , Collagen/chemistry , Drug Combinations , HEK293 Cells , Humans , Laminin/chemistry , Ligands , Male , Mutagenesis, Site-Directed , Neoplasm Invasiveness , Neoplasm Metastasis , Prognosis , Proteoglycans/chemistry , RNA Processing, Post-Transcriptional
5.
Oncogene ; 41(2): 147-158, 2022 01.
Article in English | MEDLINE | ID: mdl-34689178

ABSTRACT

G12 proteins comprise a subfamily of G-alpha subunits of heterotrimeric GTP-binding proteins (G proteins) that link specific cell surface G protein-coupled receptors (GPCRs) to downstream signaling molecules and play important roles in human physiology. The G12 subfamily contains two family members: Gα12 and Gα13 (encoded by the GNA12 and GNA13 genes, respectively) and, as with all G proteins, their activity is regulated by their ability to bind to guanine nucleotides. Increased expression of both Gα12 and Gα13, and their enhanced signaling, has been associated with tumorigenesis and tumor progression of multiple cancer types over the past decade. Despite these strong associations, Gα12/13 proteins are underappreciated in the field of cancer. As our understanding of G protein involvement in oncogenic signaling has evolved, it has become clear that Gα12/13 signaling is pleotropic and activates specific downstream effectors in different tumor types. Further, the expression of Gα12/13 proteins is regulated through a series of transcriptional and post-transcriptional mechanisms, several of which are frequently deregulated in cancer. With the ever-increasing understanding of tumorigenic processes driven by Gα12/13 proteins, it is becoming clear that targeting Gα12/13 signaling in a context-specific manner could provide a new strategy to improve therapeutic outcomes in a number of solid tumors. In this review, we detail how Gα12/13 proteins, which were first discovered as proto-oncogenes, are now known to drive several "classical" hallmarks, and also play important roles in the "emerging" hallmarks, of cancer.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13/genetics , Neoplasms/genetics , Oncogenes/genetics , Animals , Humans , Mice , Signal Transduction
6.
Int J Cancer ; 127(6): 1475-85, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20232396

ABSTRACT

Despite progress in treatment, progressive non-small cell lung cancer (NSCLC) still limits survival dramatically, and novel therapeutic compounds are needed. Initial investigations suggest that artesunate (ART), an antimalarial drug, has antiproliferative capacities. However, antiinvasive and antimetastatic properties of ART in cancer have never been explored. Therefore, this first study was performed to (i) investigate if ART is able to inhibit invasion and metastasis in NSCLC and (ii) to identify first molecular targets and mechanisms mediating this ability. ART significantly impaired matrigel invasion of 6 NSCLC cell lines and inhibited urokinase-type plasminogen activator (u-PA) activity, -protein and -mRNA expression. Furthermore, in a PCR-metastasis array, ART inhibited the expression of several matrix metalloproteinases (MMPs), especially MMP-2 and MMP-7 mRNA/protein. In luciferase reporter assays, ART downregulated MMP-2-, MMP-7- and u-PA-promoter/-enhancer activity, in parallel to AP-1- and NF-kB-transactivation. Si-RNA knockdown of u-PA, MMP-2 and MMP-7 abolished ART's ability to inhibit invasion, confirming their role as essential mediators. In vivo, ART significantly impaired primary tumor growth and metastasis in the chicken embryo metastasis (CAM) model. In conclusion, this is the first study to show that ART considerably suppresses invasion and metastasis in NSCLC, specifically targeting transcription of u-PA, MMP-2 and MMP-7, prompting immediate studies on ART as a novel therapeutic in NSCLC.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Matrix Metalloproteinases/metabolism , Neoplasm Invasiveness/prevention & control , Neoplasm Metastasis/prevention & control , Animals , Artesunate , Carcinoma, Non-Small-Cell Lung/enzymology , Cell Proliferation/drug effects , Chick Embryo , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Humans , Lung Neoplasms/enzymology , Matrix Metalloproteinases/genetics , Polymerase Chain Reaction , RNA, Messenger/genetics , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/genetics
7.
Cell Death Differ ; 26(11): 2223-2236, 2019 11.
Article in English | MEDLINE | ID: mdl-30737477

ABSTRACT

Cancer cells frequently boost nucleotide metabolism (NM) to support their increased proliferation, but the consequences of elevated NM on tumor de-differentiation are mostly unexplored. Here, we identified a role for thymidylate synthase (TS), a NM enzyme and established drug target, in cancer cell de-differentiation and investigated its clinical significance in breast cancer (BC). In vitro, TS knockdown increased the population of CD24+ differentiated cells, and attenuated migration and sphere-formation. RNA-seq profiling indicated repression of epithelial-to-mesenchymal transition (EMT) signature genes upon TS knockdown, and TS-deficient cells showed an increased ability to invade and metastasize in vivo, consistent with the occurrence of a partial EMT phenotype. Mechanistically, TS enzymatic activity was found essential for maintenance of the EMT/stem-like state by fueling a dihydropyrimidine dehydrogenase-dependent pyrimidine catabolism. In patient tissues, TS levels were found significantly higher in poorly differentiated and in triple negative BC, and strongly correlated with worse prognosis. The present study provides the rationale to study in-depth the role of NM at the crossroads of proliferation and differentiation, and depicts new avenues for the design of novel drug combinations for the treatment of BC.


Subject(s)
Cell Dedifferentiation/physiology , Thymidylate Synthase/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , CD24 Antigen/metabolism , Cell Movement , Cell Proliferation/physiology , Dihydrouracil Dehydrogenase (NADP)/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Prognosis , Pyrimidines/metabolism , Spheroids, Cellular , Thymidylate Synthase/genetics , Tumor Cells, Cultured
8.
Cancer Res ; 78(7): 1604-1618, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29343522

ABSTRACT

Cancer cells alter their metabolism to support their malignant properties. In this study, we report that the glucose-transforming polyol pathway (PP) gene aldo-keto-reductase-1-member-B1 (AKR1B1) strongly correlates with epithelial-to-mesenchymal transition (EMT). This association was confirmed in samples from lung cancer patients and from an EMT-driven colon cancer mouse model with p53 deletion. In vitro, mesenchymal-like cancer cells showed increased AKR1B1 levels, and AKR1B1 knockdown was sufficient to revert EMT. An equivalent level of EMT suppression was measured by targeting the downstream enzyme sorbitol-dehydrogenase (SORD), further pointing at the involvement of the PP. Comparative RNA sequencing confirmed a profound alteration of EMT in PP-deficient cells, revealing a strong repression of TGFß signature genes. Excess glucose was found to promote EMT through autocrine TGFß stimulation, while PP-deficient cells were refractory to glucose-induced EMT. These data show that PP represents a molecular link between glucose metabolism, cancer differentiation, and aggressiveness, and may serve as a novel therapeutic target.Significance: A glucose-transforming pathway in TGFß-driven epithelial-to-mesenchymal transition provides novel mechanistic insights into the metabolic control of cancer differentiation. Cancer Res; 78(7); 1604-18. ©2018 AACR.


Subject(s)
Aldehyde Reductase/genetics , Colonic Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , L-Iditol 2-Dehydrogenase/genetics , Lung Neoplasms/pathology , A549 Cells , Animals , Cell Line, Tumor , Glucose/metabolism , HCT116 Cells , HEK293 Cells , HT29 Cells , Humans , MCF-7 Cells , Mice , RNA Interference , RNA, Small Interfering/genetics , Transforming Growth Factor beta/metabolism
9.
Oncogene ; 37(10): 1340-1353, 2018 03.
Article in English | MEDLINE | ID: mdl-29255247

ABSTRACT

Treatment failure in solid tumors occurs due to the survival of specific subpopulations of cells that possess tumor-initiating (TIC) phenotypes. Studies have implicated G protein-coupled-receptors (GPCRs) in cancer progression and the acquisition of TIC phenotypes. Many of the implicated GPCRs signal through the G protein GNA13. In this study, we demonstrate that GNA13 is upregulated in many solid tumors and impacts survival and metastases in patients. GNA13 levels modulate drug resistance and TIC-like phenotypes in patient-derived head and neck squamous cell carcinoma (HNSCC) cells in vitro and in vivo. Blockade of GNA13 expression, or of select downstream pathways, using small-molecule inhibitors abrogates GNA13-induced TIC phenotypes, rendering cells vulnerable to standard-of-care cytotoxic therapies. Taken together, these data indicate that GNA13 expression is a potential prognostic biomarker for tumor progression, and that interfering with GNA13-induced signaling provides a novel strategy to block TICs and drug resistance in HNSCCs.


Subject(s)
Cell Transformation, Neoplastic/genetics , Drug Resistance, Neoplasm/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Transformation, Neoplastic/drug effects , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype , Signal Transduction/drug effects , Signal Transduction/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Cells, Cultured
10.
Cell Signal ; 28(10): 1479-88, 2016 10.
Article in English | MEDLINE | ID: mdl-27424208

ABSTRACT

Gα13 (encoded by GNA13 gene) is the alpha subunit of a heterotrimeric G-protein that mediates signaling through specific G-protein-coupled receptors (GPCRs). Increased GNA13 expression has been observed in metastatic breast cancer cells. Recently, we have shown that enhanced GNA13 signaling in MCF-10a cells, a benign breast cancer cell line increased its invasiveness. Previous studies have reported that Kallikrein-related peptidases (KLKs 1-15) are down-regulated in breast tumors and may have a tumor protective function. However, the mechanisms that lead to the down-regulation of KLK genes in breast cancer are yet to be elucidated. We found that enhanced GNA13 signaling represses KLK gene expression in breast cancer, and undertook examination of the mechanisms involved. A microarray analysis revealed down-regulation of several members of the Kallikrein-related peptidases (KLK) gene family, namely KLK5, KLK6, KLK7, KLK8 and KLK10, in MCF-10a lines with enhanced GNA13 protein expression. Using real-time PCR and promoter analysis, we identified that the mRNA expression and promoter activities of these KLKs are suppressed upon enforced expression of GNA13 in MCF-10a cells. Using Rhotekin pull-down assays, we identified that GNA13 suppressed Rho-A activation and protein levels in MCF-10a cells. Blocking Rho-A activation using C3-toxin or by inhibiting its down-stream effector, Rho-associated kinase (ROCK), reduced the above-mentioned KLK mRNAs in MCF-10A cells. Importantly, in a metastatic breast cancer cell line MDA-MB-157, knock down of GNA13 alone was sufficient to induce the expression KLK mRNAs. Taken together, our findings suggested that enhanced GNA13 signaling down-regulates KLK gene transcription. The ability of enhanced GNA13 signaling to suppress KLK gene expression appears at least in part due to the ability of enhanced GNA13 signaling to negatively impact Rho/ROCK-signaling.


Subject(s)
Breast Neoplasms/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Kallikreins/genetics , Signal Transduction , rhoA GTP-Binding Protein/metabolism , Bacterial Toxins/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Down-Regulation/drug effects , Down-Regulation/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Kallikreins/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Reproducibility of Results , Signal Transduction/drug effects , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL