Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805281

ABSTRACT

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Subject(s)
Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , RNA, Long Noncoding , T-Lymphocytes, Regulatory , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Cell Differentiation/genetics
2.
Clin Immunol ; 264: 110261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788884

ABSTRACT

Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.


Subject(s)
Cell Differentiation , Enhancer Elements, Genetic , Th17 Cells , Humans , Cell Differentiation/genetics , Cell Differentiation/immunology , Enhancer Elements, Genetic/genetics , Th17 Cells/immunology , Polymorphism, Single Nucleotide , Gene Expression Regulation , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Binding Sites/genetics , CRISPR-Cas Systems
3.
Diabetes Metab Res Rev ; 40(5): e3833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961656

ABSTRACT

AIMS: Heterogeneity in the rate of ß-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis. METHODS: We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in ß-cell mass measured as fasting C-peptide. RESULTS: Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in ß-cell function. The second signature was related to translation and viral infection was inversely associated with change in ß-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid ß-cell decline. CONCLUSIONS: Features that differ between individuals with slow and rapid decline in ß-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/metabolism , Female , Male , Adult , Disease Progression , Biomarkers/analysis , Follow-Up Studies , Adolescent , Young Adult , Prognosis , Proteomics , C-Peptide/analysis , C-Peptide/blood , Child , Middle Aged , Genomics , Multiomics
4.
Nucleic Acids Res ; 50(9): 4938-4958, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35511484

ABSTRACT

Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Fos-Related Antigen-2 , Proto-Oncogene Proteins c-fos/metabolism , Th17 Cells , Transcription Factor AP-1 , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Gene Expression Regulation , Humans , Mice , Th17 Cells/cytology , Th17 Cells/metabolism , Transcription Factor AP-1/metabolism
5.
Diabetologia ; 65(9): 1534-1540, 2022 09.
Article in English | MEDLINE | ID: mdl-35716175

ABSTRACT

AIMS/HYPOTHESIS: Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood collected from young children. Our aim was to determine whether perinatal DNA methylation is associated with later progression to type 1 diabetes. METHODS: Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. Children later diagnosed with type 1 diabetes and/or who tested positive for multiple islet autoantibodies (n = 43) were compared with control individuals (n = 79) who remained autoantibody-negative throughout the DIPP follow-up until 15 years of age. Potential confounding factors related to the pregnancy and the mother were included in the analysis. RESULTS: No differences in the umbilical cord blood methylation patterns were observed between the cases and controls at a false discovery rate <0.05. CONCLUSIONS/INTERPRETATION: Based on our results, differences between children who progress to type 1 diabetes and those who remain healthy throughout childhood are not yet present in the perinatal DNA methylome. However, we cannot exclude the possibility that such differences would be found in a larger dataset.


Subject(s)
Diabetes Mellitus, Type 1 , Autoantibodies , Child , Child, Preschool , DNA Methylation/genetics , Female , Fetal Blood/metabolism , Glutamate Decarboxylase , Humans , Pregnancy
6.
Immunity ; 32(6): 852-62, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20620947

ABSTRACT

Dissecting the molecular mechanisms by which T helper (Th) cells differentiate to effector Th2 cells is important for understanding the pathogenesis of immune-mediated diseases, such as asthma and allergy. Because the STAT6 transcription factor is an upstream mediator required for interleukin-4 (IL-4)-induced Th2 cell differentiation, its targets include genes important for this process. Using primary human CD4(+) T cells, and by blocking STAT6 with RNAi, we identified a number of direct and indirect targets of STAT6 with ChIP sequencing. The integration of these data sets with detailed kinetics of IL-4-driven transcriptional changes showed that STAT6 was predominantly needed for the activation of transcription leading to the Th2 cell phenotype. This integrated genome-wide data on IL-4- and STAT6-mediated transcription provide a unique resource for studies on Th cell differentiation and, in particular, for designing interventions of human Th2 cell responses.


Subject(s)
Cell Differentiation/immunology , Gene Expression Regulation/immunology , Interleukin-4/immunology , STAT6 Transcription Factor/immunology , Th2 Cells/cytology , Gene Expression , Gene Expression Profiling , Genome-Wide Association Study , Humans , Interleukin-4/genetics , Oligonucleotide Array Sequence Analysis , STAT6 Transcription Factor/genetics , Th2 Cells/immunology , Transcription, Genetic
7.
J Immunol ; 196(11): 4750-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183629

ABSTRACT

Dendritic cells (DCs) bear the main responsibility for initiation of adaptive immune responses necessary for antimicrobial immunity. In the small intestine, afferent lymphatics convey Ags and microbial signals to mesenteric lymph nodes (LNs) to induce adaptive immune responses against microbes and food Ags derived from the small intestine. Whether the large intestine is covered by the same lymphatic system or represents its own lymphoid compartment has not been studied until very recently. We identified three small mesenteric LNs, distinct from small intestinal LNs, which drain lymph specifically from the colon, and studied DC responses to the attaching and effacing pathogen Citrobacter rodentium in these. Transcriptional profiling of conventional (CD11c(high)CD103(high)) DC and plasmacytoid (plasmacytoid DC Ag-1(high)B220(+)CD11c(int)) DC (pDC) populations during steady-state conditions revealed activity of distinct sets of genes in these two DC subsets, both in small intestinal and colon-draining LNs. C. rodentium activated DC especially in colon-draining LNs, and gene expression changed in pDC more profoundly than in conventional DC. Among the genes most upregulated in pDC were C-type lectin receptor CLEC4E, IL-1Rs (IL-1R1 and -2), proinflammatory cytokines (IL-1a and IL-6), and TLR6. Our results indicate that colon immune surveillance is distinct from that of the small intestine in terms of draining LNs, and identify pDC as active sentinels of colonic inflammation and/or microbial dysbiosis.


Subject(s)
Citrobacter rodentium/immunology , Colon/immunology , Dendritic Cells/immunology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Inflammation/immunology , Lymph Nodes/immunology , Animals , Dendritic Cells/cytology , Inflammation/microbiology , Lymph Nodes/cytology , Mice , Mice, Inbred C57BL
8.
J Biol Chem ; 288(5): 3048-58, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23209281

ABSTRACT

The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets.


Subject(s)
Cell Differentiation , Moloney murine leukemia virus/physiology , Protein Serine-Threonine Kinases/metabolism , Proviruses/physiology , Th1 Cells/cytology , Th1 Cells/enzymology , Virus Integration/physiology , Animals , Cell Differentiation/genetics , Cell Polarity/genetics , Down-Regulation/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Infant, Newborn , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-12/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Receptors, Interleukin-12/metabolism , STAT4 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism , Signal Transduction/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Virus Integration/genetics
9.
J Hepatol ; 61(1): 132-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24613361

ABSTRACT

BACKGROUND & AIMS: Recent evidence suggests that in animals gut microbiota composition (GMC) affects the onset and progression of hepatic fat accumulation. The aim of this study was to investigate in humans whether subjects with high hepatic fat content (HHFC) differ in their GMC from those with low hepatic fat content (LHFC), and whether these differences are associated with body composition, biomarkers and abdominal adipose tissue inflammation. METHODS: Hepatic fat content (HFC) was measured using proton magnetic resonance spectroscopy ((1)H MRS). Fecal GMC was profiled by 16S rRNA fluorescence in situ hybridization and flow cytometry. Adipose tissue gene expression was analyzed using Affymetrix microarrays and quantitative PCR. RESULTS: The HHFC group had unfavorable GMC described by lower amount of Faecalibacterium prausnitzii (FPrau) (p<0.05) and relatively higher Enterobacteria than the LHFC group. Metabolically dysbiotic GMC associated with HOMA-IR and triglycerides (p<0.05 for both). Several inflammation-related adipose tissue genes were differentially expressed and correlated with HFC (p<0.05). In addition, the expression of certain genes correlated with GMC dysbiosis, i.e., low FPrau-to-Bacteroides ratio. CONCLUSIONS: HHFC subjects differ unfavorably in their GMC from LHFC subjects. Adipose tissue inflammation may be an important link between GMC, metabolic disturbances, and hepatic fat accumulation.


Subject(s)
Adipose Tissue/pathology , Liver/pathology , Microbiota , Adipose Tissue/metabolism , Adult , Body Composition , Cross-Sectional Studies , Digestive System/microbiology , Female , Gene Expression , Humans , Inflammation/pathology , Insulin Resistance , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Triglycerides/blood
10.
Org Lett ; 26(10): 2034-2038, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486497

ABSTRACT

Tuberculosis (TB) is one of the most dreadful diseases, killing more than 3 million humans annually. M. tuberculosis (MTb) is the causative agent for TB and has a thick and waxy cell wall, making it an attractive target for immunological studies. In this study, a heptamannopyranoside containing 1 → 2 and 1 → 6 α-mannopyranosidic linkages has been explored for the immunological evaluations. The conjugation-ready heptamannopyranoside was synthesized by exploiting the salient features of recently discovered [Au]/[Ag]-glycosidation of ethynylcyclohexyl glycosyl carbonate donors. The glycan was conjugated to the ESAT6, an early secreted protein of MTb for further characterization as a potential subunit vaccine candidate.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/metabolism , Carbonates , Catalysis
11.
Nat Commun ; 15(1): 3810, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714671

ABSTRACT

Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Glutamate Decarboxylase , Immunity, Cellular , Humans , Diabetes Mellitus, Type 1/immunology , Autoantibodies/immunology , Autoantibodies/blood , Child , Female , Male , Glutamate Decarboxylase/immunology , Child, Preschool , Adolescent , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Insulin/immunology , Islets of Langerhans/immunology , Disease Progression
12.
Stem Cells ; 30(3): 452-60, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22162396

ABSTRACT

Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied, the role of cytoplasmic regulators is still poorly characterized. Here, we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11, FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore, we demonstrate that OCT4, SOX2, and NANOG all bind to the promoter of L1TD1. Moreover, L1TD1 is highly expressed in seminomas, and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus, we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness.


Subject(s)
Cell Proliferation , DEAD-box RNA Helicases/metabolism , Embryonal Carcinoma Stem Cells/physiology , Neoplasm Proteins/metabolism , Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Argonaute Proteins/metabolism , Cells, Cultured , Embryonal Carcinoma Stem Cells/metabolism , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/physiology , Gene Expression Regulation , Humans , Promoter Regions, Genetic , Protein Binding , Proteins/genetics , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/genetics , Seminoma/metabolism , Seminoma/pathology
13.
Immunol Lett ; 263: 123-132, 2023 11.
Article in English | MEDLINE | ID: mdl-37838026

ABSTRACT

Transcriptional repressor, hypermethylated in cancer 1 (HIC1) participates in a range of important biological processes, such as tumor repression, immune suppression, embryonic development and epigenetic gene regulation. Further to these, we previously demonstrated that HIC1 provides a significant contribution to the function and development of regulatory T (Treg) cells. However, the mechanism by which it regulates these processes was not apparent. To address this question, we used affinity-purification mass spectrometry to characterize the HIC1 interactome in human Treg cells. Altogether 61 high-confidence interactors were identified, including IKZF3, which is a key transcription factor in the development of Treg cells. The biological processes associated with these interacting proteins include protein transport, mRNA processing, non-coding (ncRNA) transcription and RNA metabolism. The results revealed that HIC1 is part of a FOXP3-RUNX1-CBFB protein complex that regulates Treg signature genes thus improving our understanding of HIC1 function during early Treg cell differentiation.


Subject(s)
Immunosuppression Therapy , Lymphocyte Activation , Female , Pregnancy , Humans , Protein Transport , Cell Differentiation/genetics , Forkhead Transcription Factors/genetics , Kruppel-Like Transcription Factors/genetics , T-Lymphocytes, Regulatory
14.
Cell Rep ; 42(12): 113469, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039135

ABSTRACT

The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.


Subject(s)
Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-pim-1 , Animals , Mice , Humans , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Signal Transduction , Hematopoiesis , Cell Differentiation , Th17 Cells/metabolism
15.
EBioMedicine ; 92: 104625, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37224769

ABSTRACT

BACKGROUND: Type 1 diabetes is a complex heterogenous autoimmune disease without therapeutic interventions available to prevent or reverse the disease. This study aimed to identify transcriptional changes associated with the disease progression in patients with recent-onset type 1 diabetes. METHODS: Whole-blood samples were collected as part of the INNODIA study at baseline and 12 months after diagnosis of type 1 diabetes. We used linear mixed-effects modelling on RNA-seq data to identify genes associated with age, sex, or disease progression. Cell-type proportions were estimated from the RNA-seq data using computational deconvolution. Associations to clinical variables were estimated using Pearson's or point-biserial correlation for continuous and dichotomous variables, respectively, using only complete pairs of observations. FINDINGS: We found that genes and pathways related to innate immunity were downregulated during the first year after diagnosis. Significant associations of the gene expression changes were found with ZnT8A autoantibody positivity. Rate of change in the expression of 16 genes between baseline and 12 months was found to predict the decline in C-peptide at 24 months. Interestingly and consistent with earlier reports, increased B cell levels and decreased neutrophil levels were associated with the rapid progression. INTERPRETATION: There is considerable individual variation in the rate of progression from appearance of type 1 diabetes-specific autoantibodies to clinical disease. Patient stratification and prediction of disease progression can help in developing more personalised therapeutic strategies for different disease endotypes. FUNDING: A full list of funding bodies can be found under Acknowledgments.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Humans , Transcriptome , Disease Progression , Autoantibodies
16.
Blood ; 116(9): 1443-53, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20522714

ABSTRACT

Special AT-rich binding protein 1 (SATB1) is a global chromatin organizer and a transcription factor regulated by interleukin-4 (IL-4) during the early T helper 2 (Th2) cell differentiation. Here we show that SATB1 controls multiple IL-4 target genes involved in human Th cell polarization or function. Among the genes regulated by SATB1 is that encoding the cytokine IL-5, which is predominantly produced by Th2 cells and plays a key role in the development of eosinophilia in asthma. We demonstrate that, during the early Th2 cell differentiation, IL-5 expression is repressed through direct binding of SATB1 to the IL-5 promoter. Furthermore, SATB1 knockdown-induced up-regulation of IL-5 is partly counteracted by down-regulating GATA3 expression using RNAi in polarizing Th2 cells. Our results suggest that a competitive mechanism involving SATB1 and GATA3 regulates IL-5 transcription, and provide new mechanistic insights into the stringent regulation of IL-5 expression during human Th2 cell differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Interleukin-5/genetics , Matrix Attachment Region Binding Proteins/metabolism , Th2 Cells/cytology , Biomarkers/metabolism , Blotting, Western , CD4-Positive T-Lymphocytes/metabolism , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Profiling , Humans , Infant, Newborn , Interleukin-5/metabolism , Luciferases/metabolism , Matrix Attachment Region Binding Proteins/antagonists & inhibitors , Matrix Attachment Region Binding Proteins/genetics , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Th2 Cells/metabolism , Transcription, Genetic , Transcriptional Activation , Transfection
17.
J Immunol ; 184(9): 4990-9, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20304822

ABSTRACT

IL-12 and IL-18 are essential for Th1 differentiation, whereas the role of IFN-alpha in Th1 development is less understood. In this microarray-based study, we searched for genes that are regulated by IFN-alpha, IL-12, or the combination of IL-12 plus IL-18 during the early differentiation of human umbilical cord blood CD4(+) Th cells. Twenty-six genes were similarly regulated in response to treatment with IL-12, IFN-alpha, or the combination of IL-12 plus IL-18. These genes could therefore play a role in Th1 lineage decision. Transcription factor activating transcription factor (ATF) 3 was upregulated by these cytokines and selected for further study. Ectopic expression of ATF3 in CD4(+) T cells enhanced the production of IFN-gamma, the hallmark cytokine of Th1 cells, whereas small interfering RNA knockdown of ATF3 reduced IFN-gamma production. Furthermore, ATF3 formed an endogenous complex with JUN in CD4(+) T cells induced to Th1. Chromatin immunoprecipitation and luciferase reporter assays showed that both ATF3 and JUN are recruited to and transactivate the IFNG promoter during early Th1 differentiation. Collectively, these data indicate that ATF3 promotes human Th1 differentiation.


Subject(s)
Activating Transcription Factor 3/physiology , Gene Expression Regulation/immunology , Interferon-gamma/genetics , Up-Regulation/immunology , Activating Transcription Factor 3/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Humans , Interferon-gamma/biosynthesis , Jurkat Cells , L Cells , Mice , Promoter Regions, Genetic/immunology , Protein Transport/genetics , Protein Transport/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Transcriptional Activation/immunology , Up-Regulation/genetics
18.
Front Immunol ; 13: 856762, 2022.
Article in English | MEDLINE | ID: mdl-35784351

ABSTRACT

T helper 17 (Th17) cells protect against fungal and bacterial infections and are implicated in autoimmunity. Several long intergenic noncoding RNAs (lincRNA) are induced during Th17 differentiation, however, their contribution to Th17 differentiation is poorly understood. We aimed to characterize the function of the lincRNA Myocardial Infarction Associated Transcript (MIAT) during early human Th17 cell differentiation. We found MIAT to be upregulated early after induction of human Th17 cell differentiation along with an increase in the chromatin accessibility at the gene locus. STAT3, a key regulator of Th17 differentiation, directly bound to the MIAT promoter and induced its expression during the early stages of Th17 cell differentiation. MIAT resides in the nucleus and regulates the expression of several key Th17 genes, including IL17A, IL17F, CCR6 and CXCL13, possibly by altering the chromatin accessibility of key loci, including IL17A locus. Further, MIAT regulates the expression of protein kinase C alpha (PKCα), an upstream regulator of IL17A. A reanalysis of published single-cell RNA-seq data showed that MIAT was expressed in T cells from the synovium of RA patients. Our results demonstrate that MIAT contributes to human Th17 differentiation by upregulating several genes implicated in Th17 differentiation. High MIAT expression in T cells of RA patient synovia suggests a possible role of MIAT in Th17 mediated autoimmune pathologies.


Subject(s)
Myocardial Infarction , RNA, Long Noncoding , Cell Differentiation/genetics , Chromatin/genetics , Humans , Lymphocyte Activation , Myocardial Infarction/genetics , RNA, Long Noncoding/genetics
19.
Epigenetics ; 17(12): 1608-1627, 2022 12.
Article in English | MEDLINE | ID: mdl-35246015

ABSTRACT

DNA methylation patterns are largely established in-utero and might mediate the impacts of in-utero conditions on later health outcomes. Associations between perinatal DNA methylation marks and pregnancy-related variables, such as maternal age and gestational weight gain, have been earlier studied with methylation microarrays, which typically cover less than 2% of human CpG sites. To detect such associations outside these regions, we chose the bisulphite sequencing approach. We collected and curated clinical data on 200 newborn infants; whose umbilical cord blood samples were analysed with the reduced representation bisulphite sequencing (RRBS) method. A generalized linear mixed-effects model was fit for each high coverage CpG site, followed by spatial and multiple testing adjustment of P values to identify differentially methylated cytosines (DMCs) and regions (DMRs) associated with clinical variables, such as maternal age, mode of delivery, and birth weight. Type 1 error rate was then evaluated with a permutation analysis. We discovered a strong inflation of spatially adjusted P values through the permutation analysis, which we then applied for empirical type 1 error control. The inflation of P values was caused by a common method for spatial adjustment and DMR detection, implemented in tools comb-p and RADMeth. Based on empirically estimated significance thresholds, very little differential methylation was associated with any of the studied clinical variables, other than sex. With this analysis workflow, the sex-associated differentially methylated regions were highly reproducible across studies, technologies, and statistical models.


Subject(s)
DNA Methylation , Fetal Blood , Infant, Newborn , Pregnancy , Female , Humans , Fetal Blood/metabolism , Data Analysis , Sequence Analysis, DNA
20.
Nat Commun ; 13(1): 3798, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778420

ABSTRACT

There is an urgent need to apply effective, data-driven approaches to reliably predict engineered nanomaterial (ENM) toxicity. Here we introduce a predictive computational framework based on the molecular and phenotypic effects of a large panel of ENMs across multiple in vitro and in vivo models. Our methodology allows for the grouping of ENMs based on multi-omics approaches combined with robust toxicity tests. Importantly, we identify mRNA-based toxicity markers and extensively replicate them in multiple independent datasets. We find that models based on combinations of omics-derived features and material intrinsic properties display significantly improved predictive accuracy as compared to physicochemical properties alone.


Subject(s)
Nanostructures , Biomarkers , Nanostructures/toxicity , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL