Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
FASEB J ; 38(14): e23825, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031532

ABSTRACT

Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.


Subject(s)
Calcium , Calpain , Mice, Knockout , Muscle Proteins , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Calpain/metabolism , Mice , Calcium/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Male , Mice, Inbred C57BL , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Calcium Signaling
2.
Molecules ; 29(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39339506

ABSTRACT

A new easy protocol to functionalize the middle layer of commercial surgical face masks (FMs) with Zn and Cu oxides is proposed in order to obtain antibacterial personal protective equipment. Zinc and copper oxides were synthesized embedded in a polydopamine (PDA) shell as potential antibacterial agents; they were analyzed by XRD and TEM, revealing, in all the cases, the formation of metal oxide nanoparticles (NPs). PDA is a natural polymer appreciated for its simple and rapid synthesis, biocompatibility, and high functionalization; it is used in this work as an organic matrix that, in addition to stabilizing NPs, also acts as a diluent in the functionalization step, decreasing the metal loading on the polypropylene (PP) surface. The functionalized middle layers of the FMs were characterized by SEM, XRD, FTIR, and TXRF and tested in their bacterial-growth-inhibiting effect against Klebsiella pneumoniae and Staphylococcus aureus. Among all functionalizing agents, Cu2O-doped-ZnO NPs enclosed in PDA shell, prepared by an ultrasound-assisted method, showed the best antibacterial effect, even at low metal loading, without changing the hydrophobicity of the FM. This approach offers a sustainable solution by prolonging FM lifespan and reducing material waste.


Subject(s)
Anti-Bacterial Agents , Copper , Indoles , Polymers , Staphylococcus aureus , Zinc Oxide , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Polymers/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Copper/chemistry , Staphylococcus aureus/drug effects , Metal Nanoparticles/chemistry , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Masks , Humans
3.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834400

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disorder characterized by the loss of spinal motor neurons leading to muscle weakness and respiratory failure. Mitochondrial dysfunctions are found in the skeletal muscle of patients with SMA. For obvious ethical reasons, the diaphragm muscle is poorly studied, notwithstanding the very important role that respiratory involvement plays in SMA mortality. The main goal of this study was to investigate diaphragm functionality and the underlying molecular adaptations in SMNΔ7 mice, a mouse model that exhibits symptoms similar to that of patients with intermediate type II SMA. Functional, biochemical, and molecular analyses on isolated diaphragm were performed. The obtained results suggest the presence of an intrinsic energetic imbalance associated with mitochondrial dysfunction and a significant accumulation of reactive oxygen species (ROS). In turn, ROS accumulation can affect muscle fatigue, cause diaphragm wasting, and, in the long run, respiratory failure in SMNΔ7 mice. Exposure to the antioxidant molecule ergothioneine leads to the functional recovery of the diaphragm, confirming the presence of mitochondrial impairment and redox imbalance. These findings suggest the possibility of carrying out a dietary supplementation in SMNΔ7 mice to preserve their diaphragm function and increase their lifespan.


Subject(s)
Muscular Atrophy, Spinal , Respiratory Insufficiency , Humans , Mice , Animals , Diaphragm , Reactive Oxygen Species , Motor Neurons , Muscle, Skeletal , Disease Models, Animal
4.
Biomedicines ; 12(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39200116

ABSTRACT

Store-operated Ca2+ entry (SOCE) is a ubiquitous cellular mechanism that cells use to activate extracellular Ca2+ entry when intracellular Ca2+ stores are depleted. In skeletal muscle, SOCE occurs within Ca2+ entry units (CEUs), intracellular junctions between stacks of SR membranes containing STIM1 and transverse tubules (TTs) containing ORAI1. Gain-of-function mutations in STIM1 and ORAI1 are linked to tubular aggregate (TA) myopathy, a disease characterized by the atypical accumulation of tubes of SR origin. Moreover, SOCE and TAs are increased in the muscles of aged male mice. Here, we assessed the longitudinal effects (from 4-6 months to 10-14 months of age) of constitutive, muscle-specific Orai1 knockout (cOrai1 KO) on skeletal muscle structure, function, and the assembly of TAs and CEUs. The results from these studies indicate that cOrai1 KO mice exhibit a shorter lifespan, reduced body weight, exercise intolerance, decreased muscle-specific force and rate of force production, and an increased number of structurally damaged mitochondria. In addition, electron microscopy analyses revealed (i) the absence of TAs with increasing age and (ii) an increased number of SR stacks without adjacent TTs (i.e., incomplete CEUs) in cOrai1 KO mice. The absence of TAs is consistent with TAs being formed as a result of excessive ORAI1-dependent Ca2+ entry.

5.
bioRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293127

ABSTRACT

Limb-Girdle Muscular Dystrophy 2A (LGMD2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wildtype (WT) mice, we determined if loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD2A pathology.

6.
Cell Rep Med ; 5(3): 101439, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38402623

ABSTRACT

Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.


Subject(s)
Muscle Proteins , Muscular Diseases , Humans , Mice , Animals , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Muscular Diseases/metabolism , Taurochenodeoxycholic Acid/pharmacology , Oxidoreductases , Mice, Knockout
7.
J Funct Biomater ; 14(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37754859

ABSTRACT

The design of the implant prosthesis-abutment complex appears crucial for shaping healthy and stable peri-implant soft tissues. The aim of the present animal study was to compare two implants with different healing abutment geometries: a concave design (TEST) and a straight one (CTRL). Transmission electron microscopy (TEM) was used to quantify the three-dimensional topography and morphological properties of collagen at nanoscale resolution. 2 swine were included in the experiment and 6 implants per animal were randomly placed in the left or right hemimandible in either the physiologically mature bone present between the lower canine and first premolar or in the mandibular premolar area, within tooth extraction sites. Each CTRL implant was positioned across from its respective TEST implant on the other side of the jaw. After 12 weeks of healing, 8 specimens (4 CTRL and 4 TEST) were retrieved and prepared for histological and TEM analysis. The results showed a significantly higher percentage of area covered by collagen bundles and average bundle size in TEST implants, as well as a significant decrease in the number of longitudinally oriented bundles with respect to CTRL implants, which is potentially due to the larger size of TEST bundles. These data suggest that a concave transmucosal abutment design serves as a scaffold, favoring the deposition and growth of a well-organized peri-implant collagen structure over the implant platform in the early healing phase, also promoting the convergence of collagen fibers toward the abutment collar.

8.
J Gen Physiol ; 154(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36222861

ABSTRACT

Calcium (Ca2+) entry units (CEUs) are junctions within the I band of the sarcomere between stacks of sarcoplasmic reticulum (SR) cisternae and extensions of the transverse (T)-tubule. CEUs contain STIM1 and Orai1 proteins, the molecular machinery of store-operated Ca2+ entry (SOCE). In extensor digitorum longus (EDL) fibers of wild-type (WT) mice, CEUs transiently assemble during acute exercise and disassemble several hours thereafter. By contrast, calsequestrin-1 (CASQ1) ablation induces a compensatory constitutive assembly of CEUs in EDL fibers, resulting in enhanced constitutive and maximum SOCE that counteracts SR Ca2+ depletion during repetitive activity. However, whether CEUs form in slow-twitch fibers, which express both the skeletal CASQ1 and the cardiac CASQ2 isoforms, is unknown. Herein, we compared the structure and function of soleus muscles from WT and knockout mice that lack either CASQ1 (CASQ1-null) or both CASQs (dCASQ-null). Ultrastructural analyses showed that SR/T-tubule junctions at the I band, virtually identical to CEUs in EDL muscle, were present and more frequent in CASQ1-null than WT mice, with dCASQ-null exhibiting the highest incidence. The greater incidence of CEUs in soleus from dCASQ-null mice correlated with increased specific force production during repetitive, high-frequency stimulation, which depended on Ca2+ entry. Consistent with this, Orai1 expression was significantly increased in soleus of CASQ1-null mice, but even more in dCASQ-null mice, compared with WT. Together, these results strengthen the concept that CEU assembly strongly depends on CASQ expression and provides an alternative source of Ca2+ needed to refill SR Ca2+ stores to maintain specific force production during sustained muscle activity.


Subject(s)
Calcium , Calsequestrin , Animals , Calcium/metabolism , Calsequestrin/genetics , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Protein Isoforms/metabolism , Sarcoplasmic Reticulum/metabolism
9.
Cell Chem Biol ; 27(6): 678-697.e13, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32386594

ABSTRACT

The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptor, Notch1/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Inbred NOD , Mice, SCID , Molecular Structure , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL