Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain ; 147(7): 2428-2439, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38842726

ABSTRACT

Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aß-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.


Subject(s)
Cerebral Cortex , Positron-Emission Tomography , Supranuclear Palsy, Progressive , Tauopathies , tau Proteins , Humans , Male , Female , Positron-Emission Tomography/methods , Aged , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/metabolism , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/physiopathology , Magnetic Resonance Imaging/methods
2.
Nat Med ; 30(6): 1771-1783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890531

ABSTRACT

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values >0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , DNA-Binding Proteins , Extracellular Vesicles , Frontotemporal Dementia , tau Proteins , Humans , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , tau Proteins/blood , tau Proteins/metabolism , Extracellular Vesicles/metabolism , Frontotemporal Dementia/blood , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Biomarkers/blood , DNA-Binding Proteins/blood , DNA-Binding Proteins/genetics , Female , Male , Aged , Middle Aged , Supranuclear Palsy, Progressive/blood , Supranuclear Palsy, Progressive/diagnosis , Protein Isoforms/blood
3.
EMBO Mol Med ; 13(11): e13659, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34633146

ABSTRACT

While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , MicroRNAs , Brain , Cognition , Cognitive Dysfunction/genetics , Humans , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL