Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 44(4): e131-e144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38357817

ABSTRACT

BACKGROUND: Aortic valve stenosis (AVS) is the most common valvular disease in the developed world. AVS involves the progressive fibrocalcific remodeling of the aortic valve (AV), which impairs function and can ultimately lead to heart failure. Due to gaps in our understanding of the underlying mechanisms of AVS, there are no pharmacological treatments or dietary interventions known to slow AVS progression. Recent studies have begun to suggest oxylipins-a class of bioactive lipids-may be dysregulated in the valves of patients with AVS. METHODS: We utilized high-performance liquid chromatography-tandem mass spectrometry to conduct a targeted oxylipin analysis on human AV tissue and plasma from a cohort of 110 patients undergoing AV surgery. RESULTS: We identified 36 oxylipins in human AV tissue with all showing significant increase in patients with severe AVS. A multivariate model including patient characteristics and valvular oxylipins identified the arachidonic acid-COX (cyclooxygenase) pathway-derived prostanoids to be the most associated with AVS severity. Plasma oxylipin levels were measured in a subset of AV surgery patients and compared with a control group of healthy participants, showing distinct oxylipin profiles between control and disease. CONCLUSIONS: Our comprehensive analysis of oxylipins in the human AV identified the inflammatory and osteogenic regulating prostanoids to be positively correlated with AVS severity. This elucidation of prostanoid dysregulation warrants further research into COX inhibition to mitigate AVS.


Subject(s)
Aortic Valve Stenosis , Oxylipins , Humans , Prostaglandins , Aortic Valve Stenosis/surgery , Aortic Valve/surgery
2.
Article in English | MEDLINE | ID: mdl-38663027

ABSTRACT

Cardiogenic shock (CS) remains a high-mortality condition despite technological and therapeutic advances. One key to potentially improving CS prognosis is understanding patient heterogeneity and which patients may benefit most from different treatment options, a key element of which is sex differences. While cardiovascular diseases (CVDs) have historically been considered a male-dominant condition, the field is increasingly aware that females are also a substantial portion of the patient population. While estrogen has been implicated in protective roles against CVD and tissue hypoxia, its role in CS remains unclear. Clinically, female CS patients tend to be older, have more severe comorbidities and are more likely to have non-acute myocardial infarction etiologies with preserved ejection fractions. Female CS patients are more likely to receive pharmacotherapy while less likely to receive mechanical circulatory support. There is increased short-term mortality in females, although long-term mortality is similar between the sexes. More sex-specific and age-stratified research needs to be done to fully understand the relevant pathophysiological differences in CS, to better recognize and manage CS patients and reduce its mortality.

3.
Am J Respir Cell Mol Biol ; 69(6): 649-665, 2023 12.
Article in English | MEDLINE | ID: mdl-37552547

ABSTRACT

Asthma pathobiology includes oxidative stress that modifies cell membranes and extracellular phospholipids. Oxidized phosphatidylcholines (OxPCs) in lung lavage from allergen-challenged human participants correlate with airway hyperresponsiveness and induce bronchial narrowing in murine thin-cut lung slices. OxPCs activate many signaling pathways, but mechanisms for these responses are unclear. We hypothesize that OxPCs stimulate intracellular free Ca2+ flux to trigger airway smooth muscle contraction. Intracellular Ca2+ flux was assessed in Fura-2-loaded, cultured human airway smooth muscle cells. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) induced an approximately threefold increase in 20 kD myosin light chain phosphorylation. This correlated with a rapid peak in intracellular cytoplasmic Ca2+ concentration ([Ca2+]i) (143 nM) and a sustained plateau that included slow oscillations in [Ca2+]i. Sustained [Ca2+]i elevation was ablated in Ca2+-free buffer and by TRPA1 inhibition. Conversely, OxPAPC-induced peak [Ca2+]i was unaffected in Ca2+-free buffer, by TRPA1 inhibition, or by inositol 1,4,5-triphosphate receptor inhibition. Peak [Ca2+]i was ablated by pharmacologic inhibition of ryanodine receptor (RyR) Ca2+ release from the sarcoplasmic reticulum. Inhibiting the upstream RyR activator cyclic adenosine diphosphate ribose with 8-bromo-cyclic adenosine diphosphate ribose was sufficient to abolish OxPAPC-induced cytoplasmic Ca2+ flux. OxPAPC induced ∼15% bronchial narrowing in thin-cut lung slices that could be prevented by pharmacologic inhibition of either TRPA1 or RyR, which similarly inhibited OxPC-induced myosin light chain phosphorylation in cultured human airway smooth muscle cells. In summary, OxPC mediates airway narrowing by triggering TRPA1 and RyR-mediated mobilization of intracellular and extracellular Ca2+ in airway smooth muscle. These data suggest that OxPC in the airways of allergen-challenged subjects and subjects with asthma may contribute to airway hyperresponsiveness.


Subject(s)
Asthma , Respiratory Hypersensitivity , Humans , Animals , Mice , Ryanodine Receptor Calcium Release Channel/metabolism , Myocytes, Smooth Muscle/metabolism , Myosin Light Chains/metabolism , Cyclic ADP-Ribose/metabolism , Asthma/metabolism , Muscle Contraction/physiology , Respiratory Hypersensitivity/metabolism , Phosphatidylcholines/metabolism , Allergens/metabolism , Calcium/metabolism , TRPA1 Cation Channel/metabolism
4.
Curr Opin Clin Nutr Metab Care ; 26(2): 91-98, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36892958

ABSTRACT

PURPOSE OF THE REVIEW: Along with the growing interest in oxylipins is an increasing awareness of multiple sources of variability in oxylipin data. This review summarizes recent findings that highlight the experimental and biological sources of variation in free oxylipins. RECENT FINDINGS: Experimental factors that affect oxylipin variability include different methods of euthanasia, postmortem changes, cell culture reagents, tissue processing conditions and timing, storage losses, freeze-thaw cycles, sample preparation techniques, ion suppression, matrix effects, use and availability of oxylipin standards, and postanalysis procedures. Biological factors include dietary lipids, fasting, supplemental selenium, vitamin A deficiency, dietary antioxidants and the microbiome. Overt, but also more subtle differences in health affect oxylipin levels, including during resolution of inflammation and long-term recovery from disease. Sex, genetic variation, exposure to air pollution and chemicals found in food packaging and household and personal care products, as well as many pharmaceuticals used to treat health conditions also affect oxylipin levels. SUMMARY: Experimental sources of oxylipin variability can be minimized with proper analytical procedures and protocol standardization. Fully characterizing study parameters will help delineate biological factors of variability, which are rich sources of information that can be used to probe oxylipin mechanisms of action and to investigate their roles in health.


Subject(s)
Diet , Oxylipins , Animals , Humans , Oxylipins/metabolism , Inflammation , Fasting , Antioxidants , Mammals
5.
Rev Cardiovasc Med ; 23(1): 15, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35092207

ABSTRACT

Invasive cardiovascular procedures which include heart transplantations, congenital heart surgery, coronary artery bypass grafts, cardiac valve repair and replacement, and interventional cardiac electrophysiology procedures represent common mechanisms to treat a variety of cardiovascular diseases across the globe. The majority of these invasive approaches employ antibiotics as a regular and obligatory feature of the invasive procedure. Although the growing incidence of bacterial resistance to currently used antibiotics threatens to curtail the use of all interventional surgical techniques, it remains an underappreciated threat within the arsenal of cardiovascular therapies. It is reasonable to expect that the continued overuse of antibiotics and the frequent management of coronavirus disease 2019 (COVID-19) infected patients with high doses of antibiotics will inevitably accentuate the rise of multidrug resistance. The purpose of this article is to heighten awareness of the role of bacterial infections in cardiovascular disease, the use of antibiotics in today's cardiovascular surgical theaters, the threat facing cardiovascular surgery should multidrug resistance continue to rise unabated, and the development of new antibiotic platforms to solve this problem.


Subject(s)
Bacterial Infections , COVID-19 , Bacteria , Drug Resistance, Multiple , Humans , SARS-CoV-2
6.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L703-L717, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34346781

ABSTRACT

Oxidative stress is a hallmark of numerous airway diseases, contributing to extensive cell and tissue damage. Cell membranes and the airway mucosal lining are rich in phospholipids that are particularly susceptible to oxidative attack, producing bioactive molecules including oxidized phosphatidylcholines (OxPCs). With the recent discovery of elevated OxPCs in patients with asthma after allergen challenge, we hypothesized that OxPCs directly contribute to disease by inducing airway epithelial cell dysfunction. We found that OxPCs induced concentration-dependent cell stress and loss of viability in BEAS-2B and Calu-3 cell lines and primary human epithelial cells. These responses corresponded with significant epithelial barrier dysfunction, which was further compounded when combining OxPCs with an epithelial wound. OxPCs inhibited DNA synthesis and migration required to reestablish barrier function, but cells recovered if OxPCs were washed off soon after treatment. OxPCs induced generation of reactive oxygen species, lipid peroxidation, and mitochondrial dysfunction, raising the possibility that OxPCs cause pathological lipid metabolism in a self-propagating cycle. The oxidative stress induced by OxPCs could not be abrogated by putative OxPC receptor blockers, but partial recovery of barrier function, proliferation, and lipid peroxidation could be achieved with the antioxidant N-acetyl cysteine. In summary, we have identified OxPCs as a group of bioactive molecules that significantly impair multiple facets of epithelial cell function, consistent with pathological features of asthma. Further characterization of the mechanisms by which OxPCs affect epithelial cells could yield new insights into how oxidative stress contributes to the pathogenesis of airway disease.


Subject(s)
Asthma/pathology , Epithelial Cells/metabolism , Oxidative Stress/physiology , Phosphatidylcholines/metabolism , Respiratory Mucosa/pathology , Cell Line , Cell Movement/physiology , DNA/biosynthesis , Humans , Lipid Metabolism/physiology , Mitochondria/metabolism , Oxidation-Reduction , Phospholipids/metabolism , Reactive Oxygen Species/metabolism , Respiratory Mucosa/cytology , Respiratory System , Tight Junctions/physiology
7.
Am J Physiol Heart Circ Physiol ; 320(3): H1170-H1184, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33513080

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury. Adult rat ventricular cardiomyocytes were treated with increasing concentrations of various purified fragmented OxPCs. Cardiomyocyte viability, bioenergetic response, and calcium transients were determined in the presence of OxPCs. Five different fragmented OxPCs resulted in a decrease in cell viability, with 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC) having the most potent cardiotoxic effect in both a concentration and time dependent manner (P < 0.05). POVPC and PONPC also caused a significant decrease in Ca2+ transients and net contraction in isolated cardiomyocytes compared to vehicle treated control cells (P < 0.05). PONPC depressed maximal respiration rate (P < 0.01; 54%) and spare respiratory capacity (P < 0.01; 54.5%). Notably, neither caspase 3 activation or TUNEL staining was observed in cells treated with either POVPC or PONPC. Further, cardiac myocytes treated with OxPCs were indistinguishable from vehicle-treated control cells with respect to nuclear high-mobility group box protein 1 (HMGBP1) activity. However, glutathione peroxidase 4 activity was markedly suppressed in cardiomyocytes treated with POVPC and PONPC coincident with increased ferroptosis. Importantly, cell death induced by OxPCs could be suppressed by E06 Ab, directed against OxPCs or by ferrostatin-1, which bound the sn-2 aldehyde of POVPC during I/R. The findings of the present study demonstrate that oxidation of phosphatidylcholines during I/R generate bioactive phospholipid intermediates that disrupt mitochondrial bioenergetics and calcium transients and provoke wide spread cell death through ferroptosis. Neutralization of OxPC with E06 or with ferrostatin-1 prevents cell death during reperfusion. Our study demonstrates a novel signaling pathway that operationally links generation of OxPC during cardiac I/R to ferroptosis. Interventions designed to target OxPCs may prove beneficial in mitigating ferroptosis during I/R injury in individuals with ischemic heart disease.NEW & NOTEWORTHY Oxidized phosphatidylcholines (OxPC) generated during reperfusion injury are potent inducers of cardiomyocyte death. Our studies have shown that OxPCs exert this effect through a ferroptotic process that can be attenuated. A better understanding of the OxPC cell death pathway can prove a novel strategy for prevention of cell death during myocardial reperfusion injury.


Subject(s)
Ferroptosis/drug effects , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Phosphatidylcholines/toxicity , Animals , Calcium Signaling/drug effects , Cells, Cultured , Energy Metabolism/drug effects , Male , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidation-Reduction , Phospholipid Ethers/toxicity , Rats, Sprague-Dawley
8.
Eur Respir J ; 57(2)2021 02.
Article in English | MEDLINE | ID: mdl-32883680

ABSTRACT

Oxidised phosphatidylcholines (OxPCs) are produced under conditions of elevated oxidative stress and can contribute to human disease pathobiology. However, their role in allergic asthma is unexplored. The aim of this study was to characterise the OxPC profile in the airways after allergen challenge of people with airway hyperresponsiveness (AHR) or mild asthma. The capacity of OxPCs to contribute to pathobiology associated with asthma was also to be determined.Using bronchoalveolar lavage fluid from two human cohorts, OxPC species were quantified using ultra-high performance liquid chromatography-tandem mass spectrometry. Murine thin-cut lung slices were used to measure airway narrowing caused by OxPCs. Human airway smooth muscle (HASM) cells were exposed to OxPCs to assess concentration-associated changes in inflammatory phenotype and activation of signalling networks.OxPC profiles in the airways were different between people with and without AHR and correlated with methacholine responsiveness. Exposing patients with mild asthma to allergens produced unique OxPC signatures that associated with the severity of the late asthma response. OxPCs dose-dependently induced 15% airway narrowing in murine thin-cut lung slices. In HASM cells, OxPCs dose-dependently increased the biosynthesis of cyclooxygenase-2, interleukin (IL)-6, IL-8, granulocyte-macrophage colony-stimulating factor and the production of oxylipins via protein kinase C-dependent pathways.Data from human cohorts and primary HASM cell culture show that OxPCs are present in the airways, increase after allergen challenge and correlate with metrics of airway dysfunction. Furthermore, OxPCs may contribute to asthma pathobiology by promoting airway narrowing and inducing a pro-inflammatory phenotype and contraction of airway smooth muscle. OxPCs represent a potential novel target for treating oxidative stress-associated pathobiology in asthma.


Subject(s)
Allergens , Asthma , Administration, Inhalation , Animals , Humans , Methacholine Chloride , Mice , Phosphatidylcholines
9.
J Nutr ; 150(9): 2353-2363, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32510147

ABSTRACT

BACKGROUND: Although the combination of doxorubicin (DOX) and trastuzumab (TRZ) reduces the progression and recurrence of breast cancer, these anticancer drugs are associated with significant cardiotoxic side effects. OBJECTIVE: We investigated whether prophylactic administration of flaxseed (FLX) and its bioactive components, α-linolenic acid (ALA) and secoisolariciresinol diglucoside (SDG), would be cardioprotective against DOX + TRZ-mediated cardiotoxicity in a chronic in vivo female murine model. METHODS: Wild-type C57BL/6 female mice (10-12 wk old) received daily prophylactic treatment with one of the following diets: 1) regular control (RC) semi-purified diet; 2) 10% FLX diet; 3) 4.4% ALA diet; or 4) 0.44% SDG diet for a total of 6 wks. Within each arm, mice received 3 weekly injections of 0.9% saline or a combination of DOX [8 mg/(kg.wk)] and TRZ [3 mg/(kg.wk)] starting at the end of week 3. The main outcome was to evaluate the effects of FLX, ALA, and SDG on cardiovascular remodeling and markers of apoptosis, inflammation, and mitochondrial dysfunction. Significance between measurements was determined using a 4 (diet) × 2 (chemotherapy) × 2 (time) mixed factorial design with repeated measures. RESULTS: In the RC + DOX + TRZ-treated mice at week 6 of the study, the left ventricular ejection fraction (LVEF) decreased by 50% compared with the baseline LVEF (P < 0.05). However, the prophylactic administration of the FLX, ALA, or SDG diet was partially cardioprotective, with mice in these treatment groups showing an ∼68% increase in LVEF compared with the RC + DOX + TRZ-treated group at week 6 (P < 0.05). Although markers of inflammation (nuclear transcription factor κB), apoptosis [poly (ADP-ribose) polymerase-1 and the ratio of BCL2-associated X protein to B-cell lymphoma-extra large], and mitochondrial dysfunction (BCL2-interacting protein 3) were significantly elevated by approximately 2-fold following treatment with RC + DOX + TRZ compared with treatment with RC + saline at week 6, prophylactic administration of FLX, ALA, or SDG partially downregulated these signaling pathways. CONCLUSION: In a chronic in vivo female C57BL/6 mouse model of DOX + TRZ-mediated cardiotoxicity, FLX, ALA, and SDG were partially cardioprotective.


Subject(s)
Dietary Supplements , Doxorubicin/adverse effects , Flax , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Trastuzumab/adverse effects , Animals , Antineoplastic Agents/adverse effects , Cardiotoxicity , Female , Mice , Mice, Inbred C57BL , Ventricular Function, Left
10.
J Biol Chem ; 293(20): 7564-7577, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29563154

ABSTRACT

The mitochondrial polyglycerophospholipid cardiolipin (CL) is remodeled to obtain specific fatty acyl chains. This is predominantly accomplished by the transacylase enzyme tafazzin (TAZ). Barth syndrome (BTHS) patients with TAZ gene mutations exhibit impaired TAZ activity and loss in mitochondrial respiratory function. Previous studies identified monolysocardiolipin acyltransferase-1 (MLCL AT-1) as a mitochondrial enzyme capable of remodeling CL with fatty acid. In this study, we analyzed what relationship, if any, exists between TAZ and MLCL AT-1 with regard to CL remodeling and whether transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct improves mitochondrial respiratory function. In healthy lymphoblasts, reduction in TAZ expression through TAZ RNAi transfection resulted in a compensatory increase in MLCL AT-1 mRNA, protein, and enzyme activity, but CL mass was unaltered. In contrast, BTHS lymphoblasts exhibited decreased TAZ gene and protein expression but in addition decreased MLCL AT-1 expression and CL mass. Transfection of BTHS lymphoblasts with MLCL AT-1 expression construct increased CL, improved mitochondrial basal respiration and protein leak, and decreased the proportion of cells producing superoxide but did not restore CL molecular species composition to control levels. In addition, BTHS lymphoblasts exhibited higher rates of glycolysis compared with healthy controls to compensate for reduced mitochondrial respiratory function. Mitochondrial supercomplex assembly was significantly impaired in BTHS lymphoblasts, and transfection of BTHS lymphoblasts with MLCL AT-1 expression construct did not restore supercomplex assembly. The results suggest that expression of MLCL AT-1 depends on functional TAZ in healthy cells. In addition, transfection of BTHS lymphoblasts with an MLCL AT-1 expression construct compensates, but not completely, for loss of mitochondrial respiratory function.


Subject(s)
Acyltransferases/metabolism , Barth Syndrome/prevention & control , Cardiolipins/metabolism , Lymphocytes/enzymology , Lysophospholipids/metabolism , Mitochondria/metabolism , Acyltransferases/genetics , Barth Syndrome/enzymology , Barth Syndrome/pathology , Case-Control Studies , Cells, Cultured , Fatty Acids/metabolism , Humans , Mitochondria/pathology , Mutation
11.
Am J Physiol Heart Circ Physiol ; 317(1): H156-H163, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31050558

ABSTRACT

Cell death is an important component of the pathophysiology of any disease. Myocardial disease is no exception. Understanding how and why cells die, particularly in the heart where cardiomyocyte regeneration is limited at best, becomes a critical area of study. Ferroptosis is a recently described form of nonapoptotic cell death. It is an iron-mediated form of cell death that occurs because of accumulation of lipid peroxidation products. Reactive oxygen species and iron-mediated phospholipid peroxidation is a hallmark of ferroptosis. To date, ferroptosis has been shown to be involved in cell death associated with Alzheimer's disease, Huntington's disease, cancer, Parkinson's disease, and kidney degradation. Myocardial reperfusion injury is characterized by iron deposition as well as reactive oxygen species production. These conditions, therefore, favor the induction of ferroptosis. Currently there is no available treatment for reperfusion injury, which accounts for up to 50% of the final infarct size. This review will summarize the evidence that ferroptosis can induce cardiomyocyte death following reperfusion injury and the potential for this knowledge to open new therapeutic approaches for myocardial ischemia-reperfusion injury.


Subject(s)
Ferroptosis , Iron/metabolism , Lipid Peroxidation , Lipid Peroxides/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Phospholipids/metabolism , Animals , Humans , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Oxidation-Reduction , Signal Transduction
12.
Am J Physiol Heart Circ Physiol ; 316(3): H446-H458, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30499710

ABSTRACT

Although anticancer systemic therapy agents clearly lead to improved survival in patients with cancer, these can come at the cost of serious complications including cardiotoxicity. Two types of targeted systemic therapies currently in use for colorectal cancer (CRC) and renal cell cancer (RCC), respectively, include the vascular endothelial growth factor inhibitor bevacizumab (BVZ) and the tyrosine kinase inhibitor sunitinib (SNT). Despite the beneficial effects of BVZ and SNT in improving clinical outcomes in the settings of CRC and RCC, there is an increased risk of cardiac dysfunction. The aim of the present study was to determine whether prophylactic administration of renin-angiotensin system (RAS) inhibitors would attenuate the cardiotoxic side effects of BVZ or SNT in a chronic in vivo murine model. A total of 194 wild-type C57Bl/6 male mice received: 1) 0.9% saline, 2) BVZ (10 mg·kg-1·wk-1), or 3) SNT (40 mg·kg-1·day-1) for 4 wk. Within each arm, mice received daily prophylactic treatment with hydralazine (0.05 mg/ml), aliskiren (50 mg/kg), perindopril (4 mg/kg), or valsartan (2 mg/kg). Although hydralazine effectively lowered blood pressure in BVZ- or SNT-treated mice, it did not prevent left ventricular systolic dysfunction. Prophylactic administration of aliskiren, perindopril, or valsartan prevented adverse cardiovascular remodeling in mice treated with either BVZ or SNT. The addition of RAS antagonists also downregulated expression of phosphorylated p38 and Bcl-2-like 19-kDa interacting protein 3 in SNT-treated mice. In our chronic in vivo murine model, RAS antagonists partially attenuated the development of BVZ- or SNT-mediated cardiac dysfunction. Future clinical studies are warranted to investigate the cardioprotective effects of prophylactic treatment with RAS inhibitors in the settings of CRC and RCC. NEW & NOTEWORTHY In the evolving field of cardio-oncology, bevacizumab and sunitinib improve clinical outcomes in the settings of metastatic colorectal cancer and renal cell cancer, respectively. These anticancer drugs, however, are associated with an increased risk of cardiotoxicity. The prophylactic administration of renin-angiotensin system antagonists is partially cardioprotective against bevacizumab- and sunitinib-mediated cardiac dysfunction.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Antihypertensive Agents/therapeutic use , Antineoplastic Agents/toxicity , Renin-Angiotensin System , Ventricular Dysfunction/prevention & control , Amides/administration & dosage , Amides/therapeutic use , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Antihypertensive Agents/administration & dosage , Bevacizumab/toxicity , Cardiotoxicity , Fumarates/administration & dosage , Fumarates/therapeutic use , Hydralazine/administration & dosage , Hydralazine/therapeutic use , Male , Mice , Mice, Inbred C57BL , Perindopril/administration & dosage , Perindopril/therapeutic use , Sunitinib/toxicity , Valsartan/administration & dosage , Valsartan/therapeutic use , Ventricular Dysfunction/drug therapy , Ventricular Dysfunction/etiology
13.
Clin Proteomics ; 16: 43, 2019.
Article in English | MEDLINE | ID: mdl-31889940

ABSTRACT

BACKGROUND: There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with the institution-matched normal and control samples collected directly onto ice. METHODS: Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma samples in a step gradient of acetonitrile, and collected over preparative C18 for LC-ESI-MS/MS with a set of LTQ XL linear quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system. RESULTS: Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer. CONCLUSION: There was striking agreement between the breast cancer plasma peptides and proteins discovered by LC-ESI-MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.

14.
Can J Physiol Pharmacol ; 97(6): 473-485, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30444647

ABSTRACT

Over the past decade, there has been intense investigation in trying to understand the pathological role that oxidized phospholipids play in cardiovascular disease. Phospholipids are targets for oxidation, particularly during conditions of excess free radical generation. Once oxidized, they acquire novel roles uncharacteristic of their precursors. Oxidized phosphatidylcholines have an important role in multiple physiological and pathophysiological conditions including atherosclerosis, neurodegenerative diseases, lung disease, inflammation, and chronic alcohol consumption. Circulating oxidized phosphatidylcholine may also serve as a clinical biomarker. The focus of this review, therefore, will be to summarize existing evidence that oxidized phosphatidylcholine molecules play an important role in cardiovascular pathology.


Subject(s)
Phospholipids/metabolism , Animals , Cardiovascular Diseases/metabolism , Humans , Oxidation-Reduction
15.
Can J Physiol Pharmacol ; 97(6): 536-543, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30422687

ABSTRACT

Increasing reports of successful and safe application of bone marrow derived mesenchymal stem cells (BM-MSCs) for cell therapy are pouring in from numerous studies. However poor survival of transplanted cells in the recipient has impaired the benefits of BM-MSCs based therapies. Therefore cell product preparation procedures pertaining to MSC therapy need to be optimized to improve the survival of transplanted cells. One of the important ex vivo procedures in the preparation of cells for therapy is passaging of BM-MSCs to ensure a suitable number of cells for transplantation, which may affect the turnover of proteins involved in regulation of cell survival and (or) death pathways. In the current study, we investigated the effect of an increase in passage number of BM-MSCs in cell culture on the intracellular protein turnover (protein synthesis, processing, and degradation machinery). We performed proteomic analysis of BM-MSCs at different passages. There was no significant difference observed in the ribosomal, protein processing, and proteasomal pathways related proteins in BM-MSCs with an increase in passage number from P3 to P7. Therefore, expansion of MSCs in the cell culture in clinically relevant passages (Passage 3-7) does not affect the quality of MSCs in terms of intracellular protein synthesis and turnover.


Subject(s)
Mesenchymal Stem Cells/cytology , Protein Biosynthesis , Proteomics , Animals , Cell Culture Techniques , Cell Differentiation , Endoplasmic Reticulum/metabolism , Male , Mesenchymal Stem Cell Transplantation , Rats , Rats, Sprague-Dawley , Ribosomes/metabolism
16.
Int J Mol Sci ; 20(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823404

ABSTRACT

Acute coronary syndrome (ACS) refers to ischemic conditions that occur as a result of atherosclerotic plaque rupture and thrombus formation. It has been shown that lipid peroxidation may cause plaque instability by inducing inflammation, apoptosis, and neovascularization. There is some evidence showing that these oxidized lipids may have a prognostic value in ACS. For instance, higher levels of oxidized phospholipids on apo B-100 lipoproteins (OxPL/apoB) predicted cardiovascular events independent of traditional risk factors, C-reactive protein (hsCRP), and the Framingham Risk Score (FRS). A recent cross-sectional study showed that levels of oxylipins, namely 8,9-DiHETrE and 16-HETE, were significantly associated with cardiovascular and cerebrovascular events, respectively. They found that with every 1 nmol/L increase in the concentrations of 8,9-DiHETrE, the odds of ACS increased by 454-fold. As lipid peroxidation makes heterogonous pools of secondary products, therefore, rapid multi-analyte quantification methods are needed for their assessment. Conventional lipid assessment methods such as chemical reagents or immunoassays lack specificity and sensitivity. Lipidomics may provide another layer of a detailed molecular level to lipid assessment, which may eventually lead to exploring novel biomarkers and/or new treatment options. Here, we will briefly review the lipidomics of bioactive lipids in ACS.


Subject(s)
Acute Coronary Syndrome/blood , Lipids/blood , Acute Coronary Syndrome/metabolism , Animals , Biomarkers/blood , Humans , Lipid Metabolism
17.
Cell Tissue Res ; 374(3): 607-617, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30159756

ABSTRACT

Doxorubicin (Dox)-induced cardiotoxicity, a limiting factor in the use of Dox to treat cancer, can be mitigated by the mitogenic factor FGF2 in vitro, via a heme oxygenase 1 (HO-1)-dependent pathway. HO-1 upregulation was reported to require protein kinase CK2 activity. We show that a mutant non-mitogenic FGF2 (S117A-FGF2), which does not activate CK2, is cardioprotective against acute cardiac ischemic injury. We now investigate the potential of S117A-FGF2 to protect cardiomyocytes against acute Dox injury and decrease Dox-induced upregulation of oxidized phospholipids. The roles of CK2 and HO-1 in cardiomyocyte protection are also addressed.Rat neonatal cardiomyocyte cultures were used as an established in vitro model of acute Dox toxicity. Pretreatment with S117A-FGF2 protected against Dox-induced: oxidative stress; upregulation of fragmented and non-fragmented oxidized phosphatidylcholine species, measured by LC/MS/MS; and cardiomyocyte injury and cell death measured by LDH release and a live-dead assay. CK2 inhibitors (TBB and Ellagic acid), did not affect protection by S117A-FGF2 but prevented protection by mitogenic FGF2. Furthermore, protection by S117A-FGF2, unlike that of FGF2, was not prevented by HO-1 inhibitors and S117A-FGF2 did not upregulate HO-1. Protection by S117A-FGF2 required the activity of FGF receptor 1 and ERK.We conclude that mitogenic and non-mitogenic FGF2 protect from acute Dox toxicity by common (FGFR1) and distinct, CK2/HO-1- dependent or CK2/HO-1-independent (respectively), pathways. Non-mitogenic FGF2 merits further consideration as a preventative treatment against Dox cardiotoxicity.


Subject(s)
Cardiotonic Agents/pharmacology , Casein Kinase II/metabolism , Cytoprotection/drug effects , Doxorubicin/toxicity , Fibroblast Growth Factor 2/pharmacology , Heme Oxygenase-1/metabolism , Myocytes, Cardiac/pathology , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Models, Biological , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Phospholipids/metabolism , Rats , Reactive Oxygen Species/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction
18.
Clin Proteomics ; 15: 41, 2018.
Article in English | MEDLINE | ID: mdl-30598658

ABSTRACT

BACKGROUND: It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, plus ice cold plasma to control for pre-analytical variation. METHODS: The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were analyzed from 200 µl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. Peptides were randomly and independently sampled by LC-ESI-MS/MS. Precursor ions from peptides > E4 counts were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test. RESULTS: Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large changes in frequency by Chi Square (χ2 > 60, p < 0.0001) in the ovarian cancer samples such as ZNF91, ZNF254, F13A1, LOC102723511, ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, ITGB1, CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, LOC101927572, SMC5, SEMA6B, LOXL3, SEZ6L2, and DHCR24. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. Analysis of the frequently observed proteins by ANOVA confirmed increases in mean precursor intensity in ZFN91, TRPM5, SIRT1, CHD6, RIMS1, LOC101930455 (XP_005275896), CCDC37 and GIMAP4 between ovarian cancer versus normal female and other diseases or controls by the Tukey-Kramer HSD test. CONCLUSION: Here we show that separation of endogenous peptides with a step gradient of organic/water and differential centrifugation followed by random and independent sampling by LC-ESI-MS/MS with analysis of peptide frequency and intensity by SQL Server and R revealed significant difference in the ex vivo cleavage of peptides between ovarian cancer and other clinical treatments. There was striking agreement between the proteins discovered from cancer plasma versus previous biomarkers discovered in tumors by genetic or biochemical methods. The results indicate that variation in plasma proteins from ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research.

19.
Clin Proteomics ; 15: 39, 2018.
Article in English | MEDLINE | ID: mdl-30519149

ABSTRACT

BACKGROUND: It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma using LC-ESI-MS/MS to identify, with a linear quadrupole ion trap to identify, quantify and compare the statistical distributions of peptides cleaved ex vivo from plasma samples from different clinical populations. METHODS: A systematic method for the organic fractionation of plasma peptides was applied to identify and quantify the endogenous tryptic peptides from human plasma from multiple institutions by C18 HPLC followed nano electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) with a linear quadrupole ion trap. The endogenous tryptic peptides, or tryptic phospho peptides (i.e. without exogenous digestion), were extracted in a mixture of organic solvent and water, dried and collected by preparative C18. The tryptic peptides from 6 institutions with 12 different disease and normal EDTA plasma populations, alongside ice cold controls for pre-analytical variation, were characterized by mass spectrometry. Each patient plasma was precipitated in 90% acetonitrile and the endogenous tryptic peptides extracted by a stepwise gradient of increasing water and then formic acid resulting in 10 sub-fractions. The fractionated peptides were manually collected over preparative C18 and injected for 1508 LC-ESI-MS/MS experiments analyzed in SQL Server R. RESULTS: Peptides that were cleaved in human plasma by a tryptic activity ex vivo provided convenient and sensitive access to most human proteins in plasma that show differences in the frequency or intensity of proteins observed across populations that may have clinical significance. Combination of step wise organic extraction of 200 µL of plasma with nano electrospray resulted in the confident identification and quantification ~ 14,000 gene symbols by X!TANDEM that is the largest number of blood proteins identified to date and shows that you can monitor the ex vivo proteolysis of most human proteins, including interleukins, from blood. A total of 15,968,550 MS/MS spectra ≥ E4 intensity counts were correlated by the SEQUEST and X!TANDEM algorithms to a federated library of 157,478 protein sequences that were filtered for best charge state (2+ or 3+) and peptide sequence in SQL Server resulting in 1,916,672 distinct best-fit peptide correlations for analysis with the R statistical system. SEQUEST identified some 140,054 protein accessions, or some ~ 26,000 gene symbols, proteins or loci, with at least 5 independent correlations. The X!TANDEM algorithm made at least 5 best fit correlations to more than 14,000 protein gene symbols with p-values and FDR corrected q-values of ~ 0.001 or less. Log10 peptide intensity values showed a Gaussian distribution from E8 to E4 arbitrary counts by quantile plot, and significant variation in average precursor intensity across the disease and controls treatments by ANOVA with means compared by the Tukey-Kramer test. STRING analysis of the top 2000 gene symbols showed a tight association of cellular proteins that were apparently present in the plasma as protein complexes with related cellular components, molecular functions and biological processes. CONCLUSIONS: The random and independent sampling of pre-fractionated blood peptides by LC-ESI-MS/MS with SQL Server-R analysis revealed the largest plasma proteome to date and was a practical method to quantify and compare the frequency or log10 intensity of individual proteins cleaved ex vivo across populations of plasma samples from multiple clinical locations to discover treatment-specific variation using classical statistics suitable for clinical science. It was possible to identify and quantify nearly all human proteins from EDTA plasma and compare the results of thousands of LC-ESI-MS/MS experiments from multiple clinical populations using standard database methods in SQL Server and classical statistical strategies in the R data analysis system.

20.
Mol Cell Biochem ; 437(1-2): 163-175, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28634855

ABSTRACT

The omega-3 fatty acid, alpha linolenic acid (ALA) found in plant-derived foods induces significant cardiovascular benefits when ingested. ALA may be cardioprotective during ischemia; however, the mechanism(s) responsible for this effect is unknown. Isolated adult rat cardiomyocytes were exposed to medium containing ALA for 24 h and then exposed to non-ischemic (control), simulated ischemia (ISCH), or simulated ischemia/reperfusion (IR) conditions. Cardiomyocyte phospholipids were extracted and analyzed by an HPLC/electrospray ionization tandem mass spectrometry system. Pre-treatment of cells with ALA resulted in a significant incorporation of ALA within cardiomyocyte phosphatidylcholine. Cell death, DNA fragmentation and caspase-3 activity increased during ischemia and ischemia/reperfusion. Two pro-apoptotic oxidized phosphatidylcholine (OxPC) species, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) were significantly increased during both ischemia and ischemia/reperfusion. Pre-treatment of the cells with ALA resulted in a significant reduction in cell death during ischemia and ischemia/reperfusion challenge. Apoptosis was also inhibited during ischemia and ischemia/reperfusion as shown by reduced DNA fragmentation and decreased caspase activation. ALA pre-treatment significantly decreased the production of POVPC and PGPC during ischemia and ischemia/reperfusion. ALA pre-treatment also significantly increased in resting Ca2+ during ischemia or ischemia/reperfusion but did not improve Ca2+ transients. ALA protects the cardiomyocyte from apoptotic cell death during simulated ISCH and IR by inhibiting the production of specific pro-apoptotic OxPC species. OxPCs represent a viable interventional target to protect the heart during ischemic challenge.


Subject(s)
Apoptosis/drug effects , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Phospholipids/metabolism , alpha-Linolenic Acid/pharmacology , Animals , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL