ABSTRACT
This study was aimed at investigating the neuroprotective potential of a co-extract obtained by supercritical fluid extraction (SFE) of turmeric powder and dried coconut shreds against aluminium chloride (AlCl3)-induced Alzheimer's disease (AD) in male Wistar rats. Fifty animals were allocated to five groups, which received saline (vehicle control, group 1), a combination of saline and aluminium chloride (AlCl3) (disease control, group 2), coconut oil (COO) (SFE extracted, treatment group 3), turmeric oleoresin (Cur) (SFE extracted, treatment group 4) and SFE co-extract of turmeric powder and coconut shreds (CurCOO) (treatment group 5). Animals were subjected to behavioural evaluation. In addition, the hippocampal section of the brain from all groups was subjected to biochemical, molecular and histopathological evaluations. The results showed CurCOO administered intranasally improved cognitive abilities, reversed histological alterations in the brain, reduced hippocampus inflammation studied through proinflammatory cytokine markers like TNF-α and IL-6 as compared to the disease control group. The impact of CurCOO on preventive neurodegeneration was also observed through a reduction in protein transcription factor NF-kB in the treated group 5 as compared to a disease control group. The effect of intranasal delivery of CurCOO on the neurons responsible for memory consolidation was evident from low acetylcholinesterase (AChE) enzyme activity in the treated groups with respect to AlCl3 induced group. Summarily, the results demonstrated intranasal delivery of CurCOO to show better efficacy than Cur and COO in preventing neurodegeneration associated with AlCl3 induced Alzheimer's disease.
Subject(s)
Alzheimer Disease , Rats , Male , Animals , Aluminum Chloride , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Aluminum Compounds/adverse effects , Aluminum Compounds/metabolism , Chlorides/adverse effects , Chlorides/metabolism , Curcuma , Powders/adverse effects , Powders/metabolism , Rats, Wistar , Neuroprotection , Acetylcholinesterase/metabolism , Cocos/metabolism , Brain/metabolismABSTRACT
Climatic oscillations affect fish population dynamics, ecological processes, and fishing operations in maritime habitats. This study examined how climatic oscillations affect catch rates for striped, blue, and silver marlins in the Atlantic Ocean. These oscillations are regarded as the primary factor influencing the abundance and accessibility of specific resources utilized by fishers. Logbook data were obtained from Taiwanese large-scale fishing vessels for climatic oscillations during the period 2005-2016. The results indicated that the effect of the Subtropical Indian Ocean Dipole on marlin catch rates did not have a lag, whereas those of the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and Indian Ocean Dipole had various lags. Pearson's correlation analysis was conducted to examine the correlations between atmospheric oscillation indices and marlin catch rates, and wavelet analysis was employed to describe the influences of the most relevant lags. The results indicated that annual atmospheric fluctuations and their lags affected the abundance and catchability of striped, blue, and silver marlins in the study region. This, in turn, may affect the presence of these species in the market and lead to fluctuations in their prices in accordance with supply and demand. Overall, understanding the effects of climatic oscillations on fish species are essential for policymakers and coastal communities seeking to manage marine resources, predict changes in marine ecosystems, and establish appropriate methods for controlling the effects of climate variability.
Subject(s)
Fisheries , Animals , Fishes/physiology , Climate Change , Atlantic Ocean , Ecosystem , Population Dynamics , Taiwan , ClimateABSTRACT
Changes in oceanographic conditions can affect species distribution in marine habitats. Global climate change may negatively influence the oceanographic factor-species distribution relationship. Here, we assessed the influence of oceanographic conditions on chub mackerel (Scomber japonicus) distribution in northeastern Taiwan by constructing and using a habitat ensemble model incorporating chub mackerel fishery, climatic oscillation, and oceanography data. Our results indicated that the chub mackerel catch was mainly influenced by the Western Pacific Oscillation. Moreover, sea-surface height and mixed-layer depth exerted the most and least significant effects on chub mackerel distribution, respectively. The chub mackerel catch rate peaked in the study area with a sea-surface temperature of 29 °C, sea-surface chlorophyll of 0.25 mg/m3, sea-surface salinity of 33.7 psµ, and SSH of 0.575 m. Chub mackerel was the most widely distributed in the area between 25°N, 120.5°E and 26.2°N, 121.5°E. Our findings can be used to develop critical adaptation plans for managing chub mackerel fisheries in the northeastern waters of Taiwan. Considering changing climate conditions globally, the incorporation of this knowledge into managerial strategies may aid decision-makers in protecting not only other ocean fisheries but also individuals dependent on them.
ABSTRACT
This study investigated the potential effects of climatic oscillations on CPUE of Eleutheronema rhadinum (East Asian fourfinger threadfin), a commercially valuable fish species in East Asia. Fishery data from Chang-Yuen Ridge between 2015 and 2022 was analyzed in conjunction with four climatic oscillation indices that were lagged by up to 5 years. The results revealed a fluctuating CPUE associated with the 1-year-lagged Ocean Niño Index (ONI lag 1) and 1-year-lagged Southern Oscillation Index (SOI lag 1) suggesting a potential effect between climatic oscillation indices and East Asian fourfinger threadfin CPUE. These findings can provide insights into the association between East Asian fourfinger threadfin abundance and climatic oscillations in Chang-Yuen Ridge, Taiwan; the insights are valuable for fishery management amidst changing climate conditions.
Subject(s)
Climate Change , Fishes , Animals , Taiwan , Seasons , TemperatureABSTRACT
The present study was aimed at curating a porous KCl crosslinked hydrogel with purified subabul galactomannans (SG) from the defatted seeds of Leucaena leucocephala (subabul) and κ-carrageenan (κC) by inducing whey protein isolate (WPI). WPI showed 345% foam overrun and minimal foam drainage (%) at 70°C when whipped for 5 min at pH 6.8 in the hydrogel prepared with 6.5% w/v SG + 1% w/v κC + 0.63% w/v KCl + 2% w/v WPI. The SG and WPI incorporated porous hydrogel (SGWP) showed maximum G' (3010 Pa) and frequency independence (>30 Hz) at 65°C. NMR (1 H), scanning electron microscopy, and thermal characterization of SGWP showed a crosslinked microporous gel network formation. SGWP had high water uptake rate (Q) (432%) at 45°C. The stability of SGWP at neutral pH and high temperature (65°C) added an impetus to this study as it could be used for a wide range of applications. Hence the protein-polysaccharide complexation improvised the functional properties of the porous hydrogels. The results suggested a possible valorization of galactomannans from subabul, a forest resource, into a porous hydrogel suitable as a matrix for delivery of bioactive(s) or an aerogel for multifarious industrial applications. PRACTICAL APPLICATION: A porous hydrogel is defined as a solid, or collection of solid bodies, with sufficient open space to enable a fluid to pass through or around them. Leucaena leucocephala seed (forest resource) galactomannans are non-starch polysaccharides having weak gelling capacity. Whey protein isolates (WPI) are a dairy industry byproduct having excellent foaming properties. Incorporation of WPI in the hydrogel prepared with subabul galactomannan and κ-carrageenan using KCl as a crosslin could form a stable porous structure having high water uptake rate (Q) at neutral pH and elevated temperature. The hydrogel so developed could be a step toward circular economy.
Subject(s)
Fabaceae , Polysaccharides , Whey Proteins/chemistry , Carrageenan/chemistry , Porosity , Hydrogels , Biocompatible Materials , Seeds , WaterABSTRACT
The decline in the stock of the narrow-barred Spanish mackerel in the Taiwan Strait has sparked interest in conservation efforts. To optimize conservation and restoration efforts, it is crucial to understand their habitat preference in response to changing environments. In this study, ensemble modeling was used to investigate the seasonal distribution patterns of Spanish mackerel. Winter was identified as the most productive season, followed by fall; productivity was the lowest in summer. Five single-algorithm models were developed, and on the basis of their performance, four were selected for inclusion in an ensemble species distribution model. The spatial distribution of Spanish mackerel was primarily along the latitudinal range 23°-25°N in spring and summer. However, in fall and winter, the geographical range increased toward the southern region. The findings of this study will contribute to the understanding of this specific species and the approach used in this study may be applicable to other fisheries stocks also.
Subject(s)
Perciformes , Animals , Seasons , Taiwan , Ecosystem , OceanographyABSTRACT
This study explored the influence of climatic oscillations on the striped, blue, and silver marlin catch rates in the Indian Ocean by using logbook data from Taiwanese large-scale fishing vessels and climate records from 1994 to 2016. Only the Madden-Julian oscillation (MJO) and the subtropical Indian Ocean dipole (SIOD) had immediate effects on the striped and silver marlin catch rates. The positive and negative phases of the IOD at the lags of 7 and 3 years corresponded to increased and decreased catch rates, respectively, for both the striped and blue marlin, contrasting to the reverse pattern for the silver marlin. Similarly, all three marlin species experienced decreased and increased catch rates respectively during the positive and negative phases of the Pacific decadal oscillation. The striped and blue marlin catch rates decreased and increased during the positive and negative phases, respectively, of the SIOD and MJO with various lags. Our results suggest that the impacts of climatic oscillations on fish species are crucial for policymakers and coastal communities for managing marine resources, forecasting changes in marine ecosystems, and developing strategies to adapt to and mitigate the effects of climate variability.