Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Transplantation ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024165

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs) offer the potential to generate autologous iPSC-derived islets (iPSC islets), however, remain limited by scalability and product safety. METHODS: Herein, we report stagewise characterization of cells generated following a bioreactor-based differentiation protocol. Cell characteristics were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction, patch clamping, functional assessment, and in vivo functional and immunohistochemistry evaluation. Protocol yield and costs are assessed to determine scalability. RESULTS: Differentiation was capable of generating 90.4% PDX1+/NKX6.1+ pancreatic progenitors and 100% C-peptide+/NKX6.1+ iPSC islet cells. However, 82.1%, 49.6%, and 0.9% of the cells expressed SOX9 (duct), SLC18A1 (enterochromaffin cells), and CDX2 (gut cells), respectively. Explanted grafts contained mature monohormonal islet-like cells, however, CK19+ ductal tissues persist. Using this protocol, semi-planar differentiation using 150 mm plates achieved 5.72 × 104 cells/cm2 (total 8.3 × 106 cells), whereas complete suspension differentiation within 100 mL Vertical-Wheel bioreactors significantly increased cell yield to 1.1 × 106 cells/mL (total 105.0 × 106 cells), reducing costs by 88.8%. CONCLUSIONS: This study offers a scalable suspension-based approach for iPSC islet differentiation within Vertical-Wheel bioreactors with thorough characterization of the ensuing product to enable future protocol comparison and evaluation of approaches for off-target cell elimination. Results suggest that bioreactor-based suspension differentiation protocols may facilitate scalability and clinical implementation of iPSC islet therapies.

2.
Cells ; 12(20)2023 10 10.
Article in English | MEDLINE | ID: mdl-37887267

ABSTRACT

Type 1 Diabetes (T1D) is an autoimmune destruction of pancreatic beta cells. The development of the Edmonton Protocol for islet transplantation in 2000 revolutionized T1D treatment and offered a glimpse at a cure for the disease. In 2022, the 20-year follow-up findings of islet cell transplantation demonstrated the long-term safety of islet cell transplantation despite chronic immunosuppression. The Edmonton Protocol, however, remains limited by two obstacles: scarce organ donor availability and risks associated with chronic immunosuppression. To overcome these challenges, the search has begun for an alternative cell source. In 2006, pluripotency genomic factors, coined "Yamanaka Factors," were discovered, which reprogram mature somatic cells back to their embryonic, pluripotent form (iPSC). iPSCs can then be differentiated into specialized cell types, including islet cells. This discovery has opened a gateway to a personalized medicine approach to treating diabetes, circumventing the issues of donor supply and immunosuppression. In this review, we present a brief history of allogenic islet cell transplantation from the early days of pancreatic remnant transplantation to present work on encapsulating stem cell-derived cells. We review data on long-term outcomes and the ongoing challenges of allogenic islet cell and stem cell-derived islet cell transplant.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Islets of Langerhans Transplantation/methods , Diabetes Mellitus, Type 1/therapy , Immunosuppression Therapy/methods
3.
Stem Cell Reports ; 18(11): 2084-2095, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37922913

ABSTRACT

Generation of pure pancreatic progenitor (PP) cells is critical for clinical translation of stem cell-derived islets. Herein, we performed PP differentiation with and without AKT/P70 inhibitor AT7867 and characterized the resulting cells at protein and transcript level in vitro and in vivo upon transplantation into diabetic mice. AT7867 treatment increased the percentage of PDX1+NKX6.1+ (-AT7867: 50.9% [IQR 48.9%-53.8%]; +AT7867: 90.8% [IQR 88.9%-93.7%]; p = 0.0021) and PDX1+GP2+ PP cells (-AT7867: 39.22% [IQR 36.7%-44.1%]; +AT7867: 90.0% [IQR 88.2%-93.6%]; p = 0.0021). Transcriptionally, AT7867 treatment significantly upregulated PDX1 (p = 0.0001), NKX6.1 (p = 0.0005), and GP2 (p = 0.002) expression compared with controls, while off-target markers PODXL (p < 0.0001) and TBX2 (p < 0.0001) were significantly downregulated. Transplantation of AT7867-treated PPs resulted in faster hyperglycemia reversal in diabetic mice compared with controls (time and group: p < 0.0001). Overall, our data show that AT7867 enhances PP cell differentiation leading to accelerated diabetes reversal.


Subject(s)
Diabetes Mellitus, Experimental , Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Humans , Animals , Mice , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Diabetes Mellitus, Experimental/metabolism , Cell Differentiation , Pancreas , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism
4.
Stem Cell Res Ther ; 14(1): 154, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280707

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs) offer potential to revolutionize regenerative medicine as a renewable source for islets, dopaminergic neurons, retinal cells, and cardiomyocytes. However, translation of these regenerative cell therapies requires cost-efficient mass manufacturing of high-quality human iPSCs. This study presents an improved three-dimensional Vertical-Wheel® bioreactor (3D suspension) cell expansion protocol with comparison to a two-dimensional (2D planar) protocol. METHODS: Sendai virus transfection of human peripheral blood mononuclear cells was used to establish mycoplasma and virus free iPSC lines without common genetic duplications or deletions. iPSCs were then expanded under 2D planar and 3D suspension culture conditions. We comparatively evaluated cell expansion capacity, genetic integrity, pluripotency phenotype, and in vitro and in vivo pluripotency potential of iPSCs. RESULTS: Expansion of iPSCs using Vertical-Wheel® bioreactors achieved 93.8-fold (IQR 30.2) growth compared to 19.1 (IQR 4.0) in 2D (p < 0.0022), the largest expansion potential reported to date over 5 days. 0.5 L Vertical-Wheel® bioreactors achieved similar expansion and further reduced iPSC production cost. 3D suspension expanded cells had increased proliferation, measured as Ki67+ expression using flow cytometry (3D: 69.4% [IQR 5.5%] vs. 2D: 57.4% [IQR 10.9%], p = 0.0022), and had a higher frequency of pluripotency marker (Oct4+Nanog+Sox2+) expression (3D: 94.3 [IQR 1.4] vs. 2D: 52.5% [IQR 5.6], p = 0.0079). q-PCR genetic analysis demonstrated a lack of duplications or deletions at the 8 most commonly mutated regions within iPSC lines after long-term passaging (> 25). 2D-cultured cells displayed a primed pluripotency phenotype, which transitioned to naïve after 3D-culture. Both 2D and 3D cells were capable of trilineage differentiation and following teratoma, 2D-expanded cells generated predominantly solid teratomas, while 3D-expanded cells produced more mature and predominantly cystic teratomas with lower Ki67+ expression within teratomas (3D: 16.7% [IQR 3.2%] vs.. 2D: 45.3% [IQR 3.0%], p = 0.002) in keeping with a naïve phenotype. CONCLUSION: This study demonstrates nearly 100-fold iPSC expansion over 5-days using our 3D suspension culture protocol in Vertical-Wheel® bioreactors, the largest cell growth reported to date. 3D expanded cells showed enhanced in vitro and in vivo pluripotency phenotype that may support more efficient scale-up strategies and safer clinical implementation.


Subject(s)
Induced Pluripotent Stem Cells , Teratoma , Humans , Induced Pluripotent Stem Cells/metabolism , Ki-67 Antigen/metabolism , Leukocytes, Mononuclear , Cell Differentiation/genetics , Phenotype
5.
J Immunol ; 181(7): 4603-12, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18802062

ABSTRACT

CD4 T cells frequently help to activate CD8 T and B cells that effect transplant rejection. However, CD4 T cells alone can reject transplants, either directly or indirectly. The relative effectiveness of indirect CD4 immunity in rejecting different types of allogeneic grafts is unknown. To address this, we used a TCR transgenic mouse model in which indirect CD4 alloimmunity alone can be studied. We challenged transgenic recipients with hematopoietic cells and shortly thereafter skin transplants that could only be rejected indirectly, and observed Ag-specific indirect donor B cell and skin rejection, but not T cell elimination, reflecting a state of split tolerance. Deficiency of indirect CD4 alloimmunity in donor T cell rejection was also apparent when acute indirect rejection of donor islets occurred despite generation and maintenance of mixed T cell chimerism, due to migration of the few passenger T cells into recipient circulation. Although passenger lymphocytes delayed indirect islet rejection, they enhanced rejection by a full repertoire capable of both direct and indirect reactivity. Interestingly, the persistence of chimerism was associated with the eventual development of tolerance, as demonstrated by acceptance of donor skin grafts given late to hematopoietic cell recipients, and hyporesponsiveness of transgenic T cells from islet recipients in vitro. Mechanistically, tolerance was recessive and associated with progressive down-regulation of CD4. Collectively, our data indicate that indirect CD4 immunity is not equally destructive toward different types of allogeneic grafts, the deficiency of which generates split tolerance. The futility of these responses can convert immunity into tolerance.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Isoantigens/immunology , Transplantation Tolerance/immunology , Animals , Chimera/immunology , Female , H-Y Antigen/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Mice, Transgenic , Models, Animal , Skin Transplantation/immunology , Skin Transplantation/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation Tolerance/genetics
6.
J Immunol ; 180(8): 5177-86, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18390699

ABSTRACT

Hematopoietic chimerism is considered to generate robust allogeneic tolerance; however, tissue rejection by chimeras can occur. This "split tolerance" can result from immunity toward tissue-specific Ags not expressed by hematopoietic cells. Known to occur in chimeric recipients of skin grafts, it has not often been reported for other donor tissues. Because chimerism is viewed as a potential approach to induce islet transplantation tolerance, we generated mixed bone marrow chimerism in the tolerance-resistant NOD mouse and tested for split tolerance. An unusual multilevel split tolerance developed in NOD chimeras, but not chimeric B6 controls. NOD chimeras demonstrated persistent T cell chimerism but rejected other donor hematopoietic cells, including B cells. NOD chimeras also showed partial donor alloreactivity. Furthermore, NOD chimeras were split tolerant to donor skin transplants and even donor islet transplants, unlike control B6 chimeras. Surprisingly, islet rejection was not a result of autoimmunity, since NOD chimeras did not reject syngeneic islets. Split tolerance was linked to non-MHC genes of the NOD genetic background and was manifested recessively in F(1) studies. Also, NOD chimeras but not B6 chimeras could generate serum alloantibodies, although at greatly reduced levels compared with nonchimeric controls. Surprisingly, the alloantibody response was sufficiently cross-reactive that chimerism-induced humoral tolerance extended to third-party cells. These data identify split tolerance, generated by a tolerance-resistant genetic background, as an important new limitation to the chimerism approach. In contrast, the possibility of humoral tolerance to multiple donors is potentially beneficial.


Subject(s)
Bone Marrow Transplantation/immunology , Immune Tolerance , Islets of Langerhans Transplantation/immunology , Isoantigens/immunology , Skin Transplantation/immunology , Transplantation Chimera/immunology , Transplantation Tolerance , Animals , Autoimmunity , B-Lymphocytes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred NOD , T-Lymphocytes/immunology , Transplantation Chimera/metabolism
7.
Biol Direct ; 2: 10, 2007 Apr 16.
Article in English | MEDLINE | ID: mdl-17437644

ABSTRACT

BACKGROUND: Transplant rejection has been considered to occur primarily because donor antigens are not present during the development of the recipient's immune system to induce tolerance. Thus, transplantation prior to recipient immune system development (pre-immunocompetence transplants) should induce natural tolerance to the donor. Surprisingly, tolerance was often not the outcome in such 'natural tolerance models'. We explored the ability of natural tolerance to prevent immune responses to alloantigens, and the reasons for the disparate outcomes of pre-immunocompetence transplants. RESULTS: We found that internal transplants mismatched for a single minor-H antigen and 'healed-in' before immune system development were not ignored but instead induced natural tolerance. In contrast, multiple minor-H or MHC mismatched transplants did not consistently induce natural tolerance unless they carried chimerism generating passenger lymphocytes. To determine whether the systemic nature of passenger lymphocytes was required for their tolerizing capacity, we generated a model of localized vs. systemic donor lymphocytes. We identified the peritoneal cavity as a site that protects allogeneic lymphocytes from killing by NK cells, and found that systemic chimerism, but not chimerism restricted to the peritoneum, was capable of generating natural tolerance. CONCLUSION: These data provide an explanation for the variable results with pre-immunocompetence transplants and suggest that natural tolerance to transplants is governed by the systemic vs. localized nature of donor antigen, the site of transplantation, and the antigenic disparity. Furthermore, in the absence of systemic lymphocyte chimerism the capacity to establish natural tolerance to allogeneic tissue appears strikingly limited. REVIEWERS: This article was reviewed by Matthias von Herrath, Irun Cohen, and Wei-Ping Min (nominated by David Scott).

SELECTION OF CITATIONS
SEARCH DETAIL