Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 57(15): 8760-8768, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29992816

ABSTRACT

A novel layered Na3V(PO4)2 compound was synthesized and studied as a positive electrode material for Na-ion batteries for the first time. The as-prepared material exhibits two relatively high voltage plateaus at around 3.6 and 4.0 V vs Na+/Na. Operando X-ray diffraction investigation provides insight into the mechanisms of structural transformations upon cycling.

2.
Inorg Chem ; 56(21): 13132-13139, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29045157

ABSTRACT

We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ∼320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed to two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly "monodentate", forming one short (2.14 Å) and one long (3.01 Å) Mn-O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.

3.
J Am Chem Soc ; 137(14): 4804-14, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25811894

ABSTRACT

Li-rich oxides continue to be of immense interest as potential next generation Li-ion battery positive electrodes, and yet the role of oxygen during cycling is still poorly understood. Here, the complex electrochemical behavior of Li4FeSbO6 materials is studied thoroughly with a variety of methods. Herein, we show that oxygen release occurs at a distinct voltage plateau from the peroxo/superoxo formation making this material ideal for revealing new aspects of oxygen redox processes in Li-rich oxides. Moreover, we directly demonstrate the limited reversibility of the oxygenated species (O2(n-); n = 1, 2, 3) for the first time. We also find that during charge to 4.2 V iron is oxidized from +3 to an unusual +4 state with the concomitant formation of oxygenated species. Upon further charge to 5.0 V, an oxygen release process associated with the reduction of iron +4 to +3 is present, indicative of the reductive coupling mechanism between oxygen and metals previously reported. Thus, in full state of charge, lithium removal is fully compensated by oxygen only, as the iron and antimony are both very close to their pristine states. Besides, this charging step results in complex phase transformations that are ultimately destructive to the crystallinity of the material. Such findings again demonstrate the vital importance of fully understanding the behavior of oxygen in such systems. The consequences of these new aspects of the electrochemical behavior of lithium-rich oxides are discussed in detail.

4.
Microorganisms ; 11(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36985177

ABSTRACT

Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures, under ambient conditions. Controlling the phases formed and their texture on a larger scale may offer environmentally relevant routes to manganese oxide synthesis, with potential technological applications, for example, for energy storage. In the present study, we sought to use biofilms to promote the formation of electroactive minerals and to control the texture of these biominerals down to the electrode scale (i.e., cm scale). We used the bacterium Pseudomonas putida strain MnB1 which can produce manganese oxide in a biofilm. We characterized the biofilm-mineral assembly using a combination of electron microscopy, synchrotron-based X-ray absorption spectroscopy, X-ray diffraction, thermogravimetric analysis and electron paramagnetic resonance spectroscopy. Under optimized conditions of biofilm growth on the surface of current collectors, mineralogical characterizations revealed the formation of several minerals including a slightly crystalline MnOx birnessite. Electrochemical measurements in a half-cell against Li(0) revealed the electrochemical signature of the Mn4+/Mn3+ redox couple indicating the electroactivity of the biomineralized biofilm without any post-synthesis chemical, physical or thermal treatment. These results provide a better understanding of the properties of biomineralized biofilms and their possible use in designing new routes for one-pot electrode synthesis.

5.
Inorg Chem ; 49(16): 7401-13, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20690749

ABSTRACT

We have recently reported a promising 3.6 V metal fluorosulphate (LiFeSO(4)F) electrode, capable of high capacity, rate capability, and cycling stability. In the current work, we extend the fluorosulphate chemistry from lithium to sodium-based systems. In this venture, we have reported the synthesis and crystal structure of NaMSO(4)F candidates for the first time. As opposed to the triclinic-based LiMSO(4)F phases, the NaMSO(4)F phases adopt a monoclinic structure. We further report the degree and possibility of forming Na(Fe(1-x)M(x))SO(4)F and (Na(1-x)Li(x))MSO(4)F (M = Fe, Co, Ni) solid-solution phases for the first time. Relying on the underlying topochemical reaction, we have successfully synthesized the NaMSO(4)F, Na(Fe(1-x)M(x))SO(4)F, and (Na(1-x)Li(x))MSO(4)F products at a low temperature of 300 degrees C using both ionothermal and solid-state syntheses. The crystal structure, thermal stability, ionic conductivity, and reactivity of these new phases toward Li and Na have been investigated. Among them, NaFeSO(4)F is the only one to present some redox activity (Fe(2+)/Fe(3+)) toward Li at 3.6 V. Additionally, this phase shows a pressed-pellet ionic conductivity of 10(-7) S x cm(-1). These findings further illustrate the richness of the fluorosulphate crystal chemistry, which has just been recently unveiled.

6.
Phys Chem Chem Phys ; 12(47): 15512-22, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-20976361

ABSTRACT

A theoretical study of the lithium intercalated LiMSO(4)F and deintercalated MSO(4)F systems, where M = Fe, Co and Ni has been performed within the framework of density functional theory. Beyond predictions of structural evolution and average voltages versus a lithium electrode, we have applied partial density of states and Bader's topological analysis of the electron density to the study of lithium deintercalation. Upon lithium extraction, charge rearrangement occurs for nickel between different d-orbitals, but with little net positive charge gain, while cobalt and iron atoms end up with a clear oxidized state. The participation of oxygen ions in accepting the electron of the lithium is thus enhanced for LiNiSO(4)F. However, this effect does not affect the long-range electrostatic interactions a lot in the lithiated phase, since the valence of all transition metals is very close due to initial lower oxidized state for the Ni atom in the host. It is found that this is not essentially a long-range electrostatic interaction within the lithiated phase but within the host which explains, at least partly, the increase in voltage by passing from Fe to Ni. Our results also shed light upon the possibility of getting an approximate evaluation of the local strain associated with delithiation from the atomic volume evolutions, which are also likely to affect the electrochemical potential.

7.
Front Microbiol ; 11: 2031, 2020.
Article in English | MEDLINE | ID: mdl-33013746

ABSTRACT

Nanoparticles produced by bacteria, fungi, or plants generally have physicochemical properties such as size, shape, crystalline structure, magnetic properties, and stability which are difficult to obtain by chemical synthesis. For instance, Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures under ambient conditions. Controlling their crystallinity and texture may offer environmentally relevant routes of Mn oxide synthesis with potential technological applications, e.g., for energy storage. However, whereas the electrochemical activity of synthetic (abiotic) Mn oxides has been extensively studied, the electroactivity of Mn biominerals has been seldom investigated yet. Here we evaluated the electroactivity of biologically induced biominerals produced by the Mn(II)-oxidizer bacteria Pseudomonas putida strain MnB1. For this purpose, we explored the mechanisms of Mn biomineralization, including the kinetics of Mn(II) oxidation, under different conditions. Manganese speciation, biomineral structure, and texture as well as organic matter content were determined by a combination of X-ray diffraction, electron and X-ray microscopies, and thermogravimetric analyses coupled to mass spectrometry. Our results evidence the formation of an organic-inorganic composite material and a competition between the enzymatic (biotic) oxidation of Mn(II) to Mn(IV) yielding MnO2 birnessite and the abiotic formation of Mn(III), of which the ratio depends on oxygenation levels and activity of the bacteria. We reveal that a subtle control over the conditions of the microbial environment orients the birnessite to Mn(III)-phases ratio and the porosity of the assembly, which both strongly impact the bulk electroactivity of the composite biomineral. The electrochemical properties were tested in lithium battery configuration and exhibit very appealing performances (voltage, capacity, reversibility, and power capability), thanks to the specific texture resulting from the microbially driven synthesis route. Given that such electroactive Mn biominerals are widespread in the environment, our study opens an alternative route for the synthesis of performing electrode materials under environment-friendly conditions.

SELECTION OF CITATIONS
SEARCH DETAIL