ABSTRACT
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Epithelium/metabolism , Extracellular Matrix/metabolism , Receptors, Cytoplasmic and Nuclear/metabolismABSTRACT
The transmission of chromatin states from parent cells to daughter cells preserves cell-specific transcriptional states and thus cell identity through cell division. The mechanism that underpins this process is not fully understood. The role that chromatin states serve in transmitting gene expression information across generations via sperm and oocytes is even less understood. Here, we utilized a model in which Caenorhabditis elegans sperm and oocyte alleles were inherited in different states of the repressive mark H3K27me3. This resulted in the alleles achieving different transcriptional states within the nuclei of offspring. Using this model, we showed that sperm alleles inherited without H3K27me3 were sensitive to up-regulation in offspring somatic and germline tissues, and tissue context determined which genes were up-regulated. We found that the subset of sperm alleles that were up-regulated in offspring germlines retained the H3K27me3(-) state and were transmitted to grandoffspring as H3K27me3(-) and up-regulated epialleles, demonstrating that H3K27me3 can serve as a transgenerational epigenetic carrier in C. elegans.
Subject(s)
Alleles , Caenorhabditis elegans , Epigenesis, Genetic , Histones , Spermatozoa , Animals , Caenorhabditis elegans/genetics , Chromatin/metabolism , Histones/genetics , Male , Oocytes/metabolism , Semen/metabolism , Spermatozoa/metabolismABSTRACT
Transcriptomic approaches have provided a growing set of powerful tools with which to study genome-wide patterns of gene expression. Rapidly evolving technologies enable analysis of transcript abundance data from particular tissues and even single cells. This Primer discusses methods that can be used to collect and profile RNAs from specific tissues or cells, process and analyze high-throughput RNA-sequencing data, and define sets of genes that accurately represent a category, such as tissue-enriched or tissue-specific gene expression.
Subject(s)
Computational Biology , Gene Expression Profiling/trends , RNA/genetics , Transcriptome/genetics , Animals , Gene Expression Regulation, Developmental/genetics , Genome/genetics , High-Throughput Nucleotide Sequencing/trends , Organ Specificity/geneticsABSTRACT
Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.
Subject(s)
Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Chromatin/genetics , Chromatin/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Animals , Cell Line , Centromere/genetics , Centromere/metabolism , Chromatin/chemistry , Chromatin Assembly and Disassembly/genetics , DNA Replication/genetics , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Heterochromatin/chemistry , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/chemistry , Histones/metabolism , Humans , Molecular Sequence Annotation , Nuclear Lamina/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic/genetics , Species SpecificityABSTRACT
[This corrects the article DOI: 10.1371/journal.pgen.1006227.].
ABSTRACT
The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage's immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2's long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2's long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2's long lifespan.
Subject(s)
Caenorhabditis elegans/genetics , Animals , Caenorhabditis elegans Proteins/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Genes, Helminth , Germ-Line Mutation , Longevity/genetics , RNA Interference , Receptor, Insulin/geneticsABSTRACT
Centromeres are chromosomal loci that direct segregation of the genome during cell division. The histone H3 variant CENP-A (also known as CenH3) defines centromeres in monocentric organisms, which confine centromere activity to a discrete chromosomal region, and holocentric organisms, which distribute centromere activity along the chromosome length. Because the highly repetitive DNA found at most centromeres is neither necessary nor sufficient for centromere function, stable inheritance of CENP-A nucleosomal chromatin is postulated to propagate centromere identity epigenetically. Here, we show that in the holocentric nematode Caenorhabditis elegans pre-existing CENP-A nucleosomes are not necessary to guide recruitment of new CENP-A nucleosomes. This is indicated by lack of CENP-A transmission by sperm during fertilization and by removal and subsequent reloading of CENP-A during oogenic meiotic prophase. Genome-wide mapping of CENP-A location in embryos and quantification of CENP-A molecules in nuclei revealed that CENP-A is incorporated at low density in domains that cumulatively encompass half the genome. Embryonic CENP-A domains are established in a pattern inverse to regions that are transcribed in the germline and early embryo, and ectopic transcription of genes in a mutant germline altered the pattern of CENP-A incorporation in embryos. Furthermore, regions transcribed in the germline but not embryos fail to incorporate CENP-A throughout embryogenesis. We propose that germline transcription defines genomic regions that exclude CENP-A incorporation in progeny, and that zygotic transcription during early embryogenesis remodels and reinforces this basal pattern. These findings link centromere identity to transcription and shed light on the evolutionary plasticity of centromeres.
Subject(s)
Caenorhabditis elegans/genetics , Centromere/genetics , Chromatin/genetics , Germ Cells/metabolism , Transcription, Genetic , Animals , Autoantigens/metabolism , Biological Evolution , Caenorhabditis elegans/embryology , Centromere Protein A , Chromosomal Proteins, Non-Histone/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Female , Fertilization , Gene Expression Regulation, Developmental , Genome, Helminth , Gonads/cytology , Gonads/metabolism , Hermaphroditic Organisms , Male , MeiosisABSTRACT
The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20 ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively, and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin compaction.
Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Dosage Compensation, Genetic , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Methyltransferases/genetics , Animals , Chromatin/genetics , Disorders of Sex Development/genetics , Gene Expression Regulation, Developmental , Genes, X-Linked , Histone-Lysine N-Methyltransferase/metabolism , Male , Methylation , RNA Interference , X Chromosome/geneticsABSTRACT
Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development.
Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Chromosomes/metabolism , Histones/metabolism , Animals , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation/genetics , Genes, X-Linked/genetics , Histones/genetics , Methylation , Methyltransferases/metabolism , Nuclear Envelope/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Repetitive Sequences, Nucleic Acid/geneticsABSTRACT
Previous studies demonstrated that a subset of synMuv B mutants ectopically misexpress germline-specific P-granule proteins in their somatic cells, suggesting a failure to properly orchestrate a soma/germline fate decision. Surprisingly, this fate confusion does not affect viability at low to ambient temperatures. Here, we show that, when grown at high temperature, a majority of synMuv B mutants irreversibly arrest at the L1 stage. High temperature arrest (HTA) is accompanied by upregulation of many genes characteristic of germ line, including genes encoding components of the synaptonemal complex and other meiosis proteins. HTA is suppressed by loss of global regulators of germline chromatin, including MES-4, MRG-1, ISW-1 and the MES-2/3/6 complex, revealing that arrest is caused by somatic cells possessing a germline-like chromatin state. Germline genes are preferentially misregulated in the intestine, and necessity and sufficiency tests demonstrate that the intestine is the tissue responsible for HTA. We propose that synMuv B mutants fail to erase or antagonize an inherited germline chromatin state in somatic cells during embryonic and early larval development. As a consequence, somatic cells gain a germline program of gene expression in addition to their somatic program, leading to a mixed fate. Somatic expression of germline genes is enhanced at elevated temperature, leading to developmentally compromised somatic cells and arrest of newly hatched larvae.
Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Cell Lineage/genetics , Germ Cells/physiology , Intestines/embryology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Embryo, Nonmammalian , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Helminth , Germ Cells/growth & development , Intestinal Mucosa/metabolism , Intestines/growth & development , Larva/genetics , Larva/growth & development , Larva/metabolism , Larva/physiology , Life Cycle Stages/genetics , Microarray Analysis , Survival/physiology , TemperatureABSTRACT
Short telomeres cause age-related disease, and long telomeres contribute to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, which we call Telomere Profiling, to determine telomere length at nearly single-nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end-specific length distributions that could differ by more than six kilobases. Examination of telomere lengths in 147 individuals revealed that certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and that chromosome end-specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.
Subject(s)
Chromosome Mapping , Nanopore Sequencing , Telomere Homeostasis , Telomere Shortening , Telomere , Humans , Male , Chromosomes, Human/genetics , Fetal Blood , Nanopore Sequencing/methods , Telomere/genetics , Telomere Homeostasis/genetics , Telomere Shortening/genetics , Chromosome Mapping/methodsABSTRACT
Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.
Subject(s)
E2F Transcription Factors , Histone Deacetylases , Repressor Proteins , Retinoblastoma Protein , Humans , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , HCT116 Cells , Repressor Proteins/metabolism , Repressor Proteins/genetics , E2F Transcription Factors/metabolism , E2F Transcription Factors/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Mice , Animals , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Kv Channel-Interacting Proteins/metabolism , Kv Channel-Interacting Proteins/genetics , Cell Cycle/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation , Genes, cdcABSTRACT
Short telomeres cause age-related disease and long telomeres predispose to cancer; however, the mechanisms regulating telomere length are unclear. To probe these mechanisms, we developed a nanopore sequencing method, Telomere Profiling, that is easy to implement, precise, and cost effective with broad applications in research and the clinic. We sequenced telomeres from individuals with short telomere syndromes and found similar telomere lengths to the clinical FlowFISH assay. We mapped telomere reads to specific chromosome end and identified both chromosome end-specific and haplotype-specific telomere length distributions. In the T2T HG002 genome, where the average telomere length is 5kb, we found a remarkable 6kb difference in lengths between some telomeres. Further, we found that specific chromosome ends were consistently shorter or longer than the average length across 147 individuals. The presence of conserved chromosome end-specific telomere lengths suggests there are new paradigms in telomere biology that are yet to be explored. Understanding the mechanisms regulating length will allow deeper insights into telomere biology that can lead to new approaches to disease.
ABSTRACT
Methylation of histone H3K36 in higher eukaryotes is mediated by multiple methyltransferases. Set2-related H3K36 methyltransferases are targeted to genes by association with RNA Polymerase II and are involved in preventing aberrant transcription initiation within the body of genes. The targeting and roles of the NSD family of mammalian H3K36 methyltransferases, known to be involved in human developmental disorders and oncogenesis, are not known. We used genome-wide chromatin immunoprecipitation (ChIP) to investigate the targeting and roles of the Caenorhabditis elegans NSD homolog MES-4, which is maternally provided to progeny and is required for the survival of nascent germ cells. ChIP analysis in early C. elegans embryos revealed that, consistent with immunostaining results, MES-4 binding sites are concentrated on the autosomes and the leftmost approximately 2% (300 kb) of the X chromosome. MES-4 overlies the coding regions of approximately 5,000 genes, with a modest elevation in the 5' regions of gene bodies. Although MES-4 is generally found over Pol II-bound genes, analysis of gene sets with different temporal-spatial patterns of expression revealed that Pol II association with genes is neither necessary nor sufficient to recruit MES-4. In early embryos, MES-4 associates with genes that were previously expressed in the maternal germ line, an interaction that does not require continued association of Pol II with those loci. Conversely, Pol II association with genes newly expressed in embryos does not lead to recruitment of MES-4 to those genes. These and other findings suggest that MES-4, and perhaps the related mammalian NSD proteins, provide an epigenetic function for H3K36 methylation that is novel and likely to be unrelated to ongoing transcription. We propose that MES-4 transmits the memory of gene expression in the parental germ line to offspring and that this memory role is critical for the PGCs to execute a proper germline program.
Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Embryo, Nonmammalian/enzymology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Germ Cells/enzymology , Histone-Lysine N-Methyltransferase/metabolism , Animals , Binding Sites , Biocatalysis , Caenorhabditis elegans/embryology , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/genetics , Embryo, Nonmammalian/cytology , Female , Genes, Helminth/genetics , Germ Cells/cytology , Histone Methyltransferases , Histones/metabolism , Lysine/metabolism , Methylation , Open Reading Frames/genetics , Protein Binding , RNA Interference , RNA Polymerase II/metabolism , X Chromosome/metabolismABSTRACT
Coprinopsis cinerea (also known as Coprinus cinereus) is a multicellular basidiomycete mushroom particularly suited to the study of meiosis due to its synchronous meiotic development and prolonged prophase. We examined the 15-hour meiotic transcriptional program of C. cinerea, encompassing time points prior to haploid nuclear fusion though tetrad formation, using a 70-mer oligonucleotide microarray. As with other organisms, a large proportion (â¼20%) of genes are differentially regulated during this developmental process, with successive waves of transcription apparent in nine transcriptional clusters, including one enriched for meiotic functions. C. cinerea and the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe diverged â¼500-900 million years ago, permitting a comparison of transcriptional programs across a broad evolutionary time scale. Previous studies of S. cerevisiae and S. pombe compared genes that were induced upon entry into meiosis; inclusion of C. cinerea data indicates that meiotic genes are more conserved in their patterns of induction across species than genes not known to be meiotic. In addition, we found that meiotic genes are significantly more conserved in their transcript profiles than genes not known to be meiotic, which indicates a remarkable conservation of the meiotic process across evolutionarily distant organisms. Overall, meiotic function genes are more conserved in both induction and transcript profile than genes not known to be meiotic. However, of 50 meiotic function genes that were co-induced in all three species, 41 transcript profiles were well-correlated in at least two of the three species, but only a single gene (rad50) exhibited coordinated induction and well-correlated transcript profiles in all three species, indicating that co-induction does not necessarily predict correlated expression or vice versa. Differences may reflect differences in meiotic mechanisms or new roles for paralogs. Similarities in induction, transcript profiles, or both, should contribute to gene discovery for orthologs without currently characterized meiotic roles.
Subject(s)
Basidiomycota/cytology , Basidiomycota/genetics , Conserved Sequence/genetics , Evolution, Molecular , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Meiosis/genetics , Cell Nucleus/genetics , Cluster Analysis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , History, Ancient , Multigene Family/genetics , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics , Time Factors , Transcription, GeneticABSTRACT
Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.
ABSTRACT
Spermatogenesis is the process through which mature male gametes are formed and is necessary for the transmission of genetic information. While much work has established how sperm fate is promoted and maintained, less is known about how the sperm morphogenesis program is executed. We previously identified a novel role for the nuclear hormone receptor transcription factor, NHR-23, in promoting Caenorhabditis elegans spermatogenesis. The depletion of NHR-23 along with SPE-44, another transcription factor that promotes spermatogenesis, caused additive phenotypes. Through RNA-seq, we determined that NHR-23 and SPE-44 regulate distinct sets of genes. The depletion of both NHR-23 and SPE-44 produced yet another set of differentially regulated genes. NHR-23-regulated genes are enriched in phosphatases, consistent with the switch from genome quiescence to post-translational regulation in spermatids. In the parasitic nematode Ascaris suum, MFP1 and MFP2 control the polymerization of Major Sperm Protein, the molecule that drives sperm motility and serves as a signal to promote ovulation. NHR-23 and SPE-44 regulate several MFP2 paralogs, and NHR-23 depletion from the male germline caused defective localization of MSD/MFP1 and NSPH-2/MFP2. Although NHR-23 and SPE-44 do not transcriptionally regulate the casein kinase gene spe-6, a key regulator of sperm development, SPE-6 protein is lost following NHR-23+SPE-44 depletion. Together, these experiments provide the first mechanistic insight into how NHR-23 promotes spermatogenesis and an entry point to understanding the synthetic genetic interaction between nhr-23 and spe-44.
Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Female , Male , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Mutation , Sperm Motility , Semen/metabolism , Spermatogenesis/genetics , Transcription Factors/geneticsABSTRACT
RelA/SpoT homologue (RSH) proteins have (p)ppGpp synthetase and hydrolase activities that mediate major global responses to nutrient limitation and other stresses. RSH proteins are conserved in most bacteria and play diverse roles in bacterial pathogenesis. We report here that the RSH protein of Streptococcus pneumoniae, Rel(Spn), can be deleted and is the primary source of (p)ppGpp synthesis in virulent strain D39 under some conditions. A D39 Deltarel(Spn) mutant grew well in complex medium, but did not grow in chemically defined medium unless supplemented with the metals copper and manganese. Transcriptome analysis of D39 rel(+)(Spn) and Deltarel(Spn) strains treated with mupirocin revealed rel(Spn)-independent (translation stress), rel(Spn)-dependent (stringent response) and Deltarel(Spn)-dependent changes, suggesting that rel(Spn) and (p)ppGpp amount play wide-ranging homeostatic roles in pneumococcal physiology, besides adjusting macromolecular synthesis and transport in response to nutrient availability. Notably, the rel(Spn)-dependent response included significant upregulation of the ply operon encoding pneumolysin toxin, whereas the Deltarel(Spn)-dependent response affected expression linked to the VicRK and CiaRH two-component systems. Finally, a D39 Deltarel(Spn) mutant was severely attenuated and displayed a significantly altered course of disease progression in a mouse model of infection, which was restored to normal by an ectopic copy of rel(+)(Spn).
Subject(s)
Bacterial Proteins/metabolism , Guanosine Pentaphosphate/biosynthesis , Streptococcus pneumoniae/physiology , Animals , Bacterial Proteins/genetics , Culture Media , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Male , Mice , Mice, Inbred ICR , Oligonucleotide Array Sequence Analysis , RNA, Bacterial/genetics , Regulon , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , VirulenceABSTRACT
MOTIVATION: Methods to improve tiling array expression signals are needed to accurately detect genome features. Royce et al. provide statistical normalizations of tile signal based on probe sequence content that promises improved accuracy, and should be independently verified. RESULTS: Assessment of the sequence content normalization methods identified a problem: confounding of probe sequence content with gene structure (intron/exon) sequence content. Normalization obscured tile signal changes at gene structure boundaries. This and other evidence suggests that simple sequence normalization does not improve detection of genes from tile expression data.
Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Animals , Base Composition/genetics , Base Sequence , Daphnia/genetics , Drosophila melanogaster/genetics , Exons/genetics , Introns/geneticsABSTRACT
Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-ß pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-ß/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.