Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circ Res ; 135(1): 60-75, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38770652

ABSTRACT

BACKGROUND: Pathogenic concepts of right ventricular (RV) failure in pulmonary arterial hypertension focus on a critical loss of microvasculature. However, the methods underpinning prior studies did not take into account the 3-dimensional (3D) aspects of cardiac tissue, making accurate quantification difficult. We applied deep-tissue imaging to the pressure-overloaded RV to uncover the 3D properties of the microvascular network and determine whether deficient microvascular adaptation contributes to RV failure. METHODS: Heart sections measuring 250-µm-thick were obtained from mice after pulmonary artery banding (PAB) or debanding PAB surgery and properties of the RV microvascular network were assessed using 3D imaging and quantification. Human heart tissues harvested at the time of transplantation from pulmonary arterial hypertension cases were compared with tissues from control cases with normal RV function. RESULTS: Longitudinal 3D assessment of PAB mouse hearts uncovered complex microvascular remodeling characterized by tortuous, shorter, thicker, highly branched vessels, and overall preserved microvascular density. This remodeling process was reversible in debanding PAB mice in which the RV function recovers over time. The remodeled microvasculature tightly wrapped around the hypertrophied cardiomyocytes to maintain a stable contact surface to cardiomyocytes as an adaptation to RV pressure overload, even in end-stage RV failure. However, microvasculature-cardiomyocyte contact was impaired in areas with interstitial fibrosis where cardiomyocytes displayed signs of hypoxia. Similar to PAB animals, microvascular density in the RV was preserved in patients with end-stage pulmonary arterial hypertension, and microvascular architectural changes appeared to vary by etiology, with patients with pulmonary veno-occlusive disease displaying a lack of microvascular complexity with uniformly short segments. CONCLUSIONS: 3D deep tissue imaging of the failing RV in PAB mice, pulmonary hypertension rats, and patients with pulmonary arterial hypertension reveals complex microvascular changes to preserve the microvascular density and maintain a stable microvascular-cardiomyocyte contact. Our studies provide a novel framework to understand microvascular adaptation in the pressure-overloaded RV that focuses on cell-cell interaction and goes beyond the concept of capillary rarefaction.


Subject(s)
Hypertension, Pulmonary , Imaging, Three-Dimensional , Mice, Inbred C57BL , Animals , Humans , Mice , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Male , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/pathology , Microvessels/physiopathology , Microvessels/diagnostic imaging , Microvessels/pathology , Vascular Remodeling , Pulmonary Artery/physiopathology , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/pathology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right , Ventricular Remodeling , Disease Models, Animal , Myocytes, Cardiac/pathology
2.
Mol Ecol ; 33(6): e17282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299701

ABSTRACT

Many species are shifting their ranges in response to climate-driven environmental changes, particularly in high-latitude regions. However, the patterns of dispersal and colonization during range shifting events are not always clear. Understanding how populations are connected through space and time can reveal how species navigate a changing environment. Here, we present a fine-scale population genomics study of gentoo penguins (Pygoscelis papua), a presumed site-faithful colonial nesting species that has increased in population size and expanded its range south along the Western Antarctic Peninsula. Using whole genome sequencing, we analysed 129 gentoo penguin individuals across 12 colonies located at or near the southern range edge. Through a detailed examination of fine-scale population structure, admixture, and population divergence, we inferred that gentoo penguins historically dispersed rapidly in a stepping-stone pattern from the South Shetland Islands leading to the colonization of Anvers Island, and then the adjacent mainland Western Antarctica Peninsula. Recent southward expansion along the Western Antarctic Peninsula also followed a stepping-stone dispersal pattern coupled with limited post-divergence gene flow from colonies on Anvers Island. Genetic diversity appeared to be maintained across colonies during the historical dispersal process, and range-edge populations are still growing. This suggests large numbers of migrants may provide a buffer against founder effects at the beginning of colonization events to maintain genetic diversity similar to that of the source populations before migration ceases post-divergence. These results coupled with a continued increase in effective population size since approximately 500-800 years ago distinguish gentoo penguins as a robust species that is highly adaptable and resilient to changing climate.


Subject(s)
Founder Effect , Spheniscidae , Humans , Animals , Population Density , Spheniscidae/genetics , Antarctic Regions , Whole Genome Sequencing
3.
Article in English | MEDLINE | ID: mdl-38847906

ABSTRACT

Cardiorenal syndrome (CRS) due to right ventricular (RV) failure is a disease entity emerging as a key indicator of morbidity and mortality. The multifactorial aspects of CRS and the left-right ventricular interdependence complicate the link between RV failure and renal function. RV failure has a direct pathophysiological link to renal dysfunction by leading to systemic venous congestion in certain circumstances and low cardiac output in other situations, both leading to impaired renal perfusion. Indeed, renal dysfunction is known to be an independent predictor of mortality in patients with pulmonary arterial hypertension (PAH) and RV failure. Thus, it is important to further understand the interaction between the RV and renal function. RV adaptation is critical to long-term survival in patients with PAH. The RV is also known for its remarkable capacity to recover once the aggravating factor is addressed or mitigated. However, less is known about the renal potential for recovery following the resolution of chronic RV failure. In this review, we provide an overview of the intricate relationship between RV dysfunction and the subsequent development of CRS, with a particular emphasis on PAH. Additionally, we summarize potential RV-targeted therapies and their potential beneficial impact on renal function.

4.
Proc Biol Sci ; 290(1995): 20222395, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36987643

ABSTRACT

Organisms are subject to physical forces that influence morphological evolution. Birds use their bills as implements to perform various functions, each exerting unique physical demands. When excavating cavities, bird bills must resist a range of mechanical stresses to prevent fracture. However, the contribution of bill geometry and material composition to excavation stress resistance remains poorly understood. Here, we study the biomechanical consequences of bill diversification in the cavity-excavating palaeotropical barbets. Using finite-element models and beam theory, we compare excavation performance for two loading regimes experienced by barbet bills during cavity excavation: impact and torsion. We find that deeper and wider maxillae perform better for impact loads than for torsional loads, with the converse for narrower maxillae. This results in tradeoffs between impact and torsion resistance imposed by bill geometry. Analytical beam models validate this prediction, showing that this relationship holds even when maxillae are simplified to solid elliptical beams. Finally, we find that composite bill structures broadly exhibit lower stresses than homogeneous structures of the same geometry, indicating a functional synergy between the keratinous rhamphotheca and bony layers of the bill. Overall, our findings demonstrate the strong link between morphological evolution, behaviour and functional performance in organisms.


Subject(s)
Birds , Animals , Finite Element Analysis , Biomechanical Phenomena , Birds/anatomy & histology , Stress, Mechanical
5.
Pediatr Cardiol ; 44(6): 1232-1241, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36797379

ABSTRACT

Right ventricular (RV) dysfunction early after tetralogy of Fallot (TOF) increases post-operative morbidity. We investigated associations of circulating biomarkers and socioeconomic factors with early post-operative RV systolic function. Single-center prospective cohort study of infants undergoing TOF repair. Six serologic biomarkers of myocardial fibrosis and wall stress collected at the time of surgery were measured with immunoassay. Geocoding was performed for socioeconomic factors. Multivariate adaptive regression splines (MARS) models identified factors associated with RV function parameters: fractional area change (FAC), global longitudinal strain and strain rate, and free wall strain and strain rate. Seventy-one patients aged 3.5 months (IQR 2.4, 5.2) were included. Galectin-3 was the highest ranked predictor for FAC, global longitudinal strain, and free wall strain, and procollagen type-I carboxy-terminal propeptide (PICP) was the highest ranked predictor for global longitudinal strain rate and free wall strain rate. Several neighborhood characteristics were also highly ranked. Models adjusted R2 ranged from 0.71 to 0.85 (FAC, global longitudinal strain/strain rate), and 0.55-0.57 (RV free wall strain/strain rate). A combination of serologic biomarkers, socioeconomic, and clinical variables explain a significant proportion of the variability in RV function after TOF repair. These factors may inform pre-operative risk-stratification for these patients.


Subject(s)
Tetralogy of Fallot , Ventricular Dysfunction, Right , Infant , Humans , Ventricular Function, Right , Prospective Studies , Biomarkers , Socioeconomic Factors
6.
Circulation ; 144(21): 1714-1731, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34672721

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS: We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS: Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS: Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.


Subject(s)
Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/metabolism , Disease Susceptibility , Energy Metabolism , Mitochondria/genetics , Mitochondria/metabolism , Adult , Aged , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy , Cell Respiration/genetics , Computational Biology/methods , Disease Management , Female , Gene Expression Profiling , Heart Function Tests , Humans , Lipidomics , Male , Metabolome , Metabolomics/methods , Middle Aged , Mitochondria/ultrastructure , Mutation , Oxidative Stress , Reactive Oxygen Species , Transcriptome
7.
Am J Perinatol ; 39(15): 1688-1692, 2022 11.
Article in English | MEDLINE | ID: mdl-33706395

ABSTRACT

OBJECTIVE: Neonates perceive pain which also has adverse long-term consequences. Newborns experience several painful procedures a day. Various methods of analgesia may be used but are underutilized. The SMART aim of this project was to increase the use of procedural analgesia from 11.5 to 75% in 6 months by using quality improvement principles. STUDY DESIGN: After a baseline audit, a root cause analysis was done. Based on this, a series of interventions were done as Plan-Do-Study-Act (PDSA) cycles. These included posters on analgesia, display of the pain protocol, orders for analgesia, a written test, small power point presentations on the importance of analgesia, and reminders on the trays used for procedures. At the end of each PDSA cycle, an audit was done to determine the proportion of times analgesia was used. Process indicators were also used when possible. Analysis was done by using the Chi-square test and the paired t-test. RESULTS: At baseline 11% of procedures were done after giving analgesia. This significantly improved to 40% at the end of the first PDSA, and 81% after third PDSA. This was sustained at 75% over the next 2 months. CONCLUSION: Procedural analgesia can improve and be sustained by using simple interventions. KEY POINTS: · Procedural pain in neonates can be decreased by the use of analgesia.. · However, most units do not utilize analgesia appropriately.. · This QI showed that simple interventions can optimize use of procedural analgesia..


Subject(s)
Analgesia , Intensive Care Units, Neonatal , Infant, Newborn , Humans , Quality Improvement , Analgesia/adverse effects , Pain Management/methods , Pain/etiology , Pain/prevention & control
8.
Am J Respir Cell Mol Biol ; 65(3): 272-287, 2021 09.
Article in English | MEDLINE | ID: mdl-33938785

ABSTRACT

Right ventricular (RV) function is the predominant determinant of survival in patients with pulmonary arterial hypertension (PAH). In preclinical models, pharmacological activation of BMP (bone morphogenetic protein) signaling with FK506 (tacrolimus) improved RV function by decreasing RV afterload. FK506 therapy further stabilized three patients with end-stage PAH. Whether FK506 has direct effects on the pressure-overloaded right ventricle is yet unknown. We hypothesized that increasing cardiac BMP signaling with FK506 improves RV structure and function in a model of fixed RV afterload after pulmonary artery banding (PAB). Direct cardiac effects of FK506 on the microvasculature and RV fibrosis were studied after surgical PAB in wild-type and heterozygous Bmpr2 mutant mice. RV function and strain were assessed longitudinally via cardiac magnetic resonance imaging during continuous FK506 infusion. Genetic lineage tracing of endothelial cells (ECs) was performed to assess the contribution of ECs to fibrosis. Molecular mechanistic studies were performed in human cardiac fibroblasts and ECs. In mice, low BMP signaling in the right ventricle exaggerated PAB-induced RV fibrosis. FK506 therapy restored cardiac BMP signaling, reduced RV fibrosis in a BMP-dependent manner independent from its immunosuppressive effect, preserved RV capillarization, and improved RV function and strain over the time course of disease. Endothelial mesenchymal transition was a rare event and did not significantly contribute to cardiac fibrosis after PAB. Mechanistically, FK506 required ALK1 in human cardiac fibroblasts as a BMPR2 co-receptor to reduce TGFß1-induced proliferation and collagen production. Our study demonstrates that increasing cardiac BMP signaling with FK506 improves RV structure and function independent from its previously described beneficial effects on pulmonary vascular remodeling.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Proteins/metabolism , Pulmonary Arterial Hypertension/metabolism , Signal Transduction/drug effects , Tacrolimus/pharmacology , Ventricular Function, Right/drug effects , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Proteins/genetics , Fibroblasts/metabolism , Fibrosis , Humans , Male , Mice , Mice, Mutant Strains , Myocardium/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/genetics , Signal Transduction/genetics , Ventricular Function, Right/genetics
9.
Circulation ; 142(17): 1667-1683, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32806952

ABSTRACT

BACKGROUND: In patients with complex congenital heart disease, such as those with tetralogy of Fallot, the right ventricle (RV) is subject to pressure overload stress, leading to RV hypertrophy and eventually RV failure. The role of lipid peroxidation, a potent form of oxidative stress, in mediating RV hypertrophy and failure in congenital heart disease is unknown. METHODS: Lipid peroxidation and mitochondrial function and structure were assessed in right ventricle (RV) myocardium collected from patients with RV hypertrophy with normal RV systolic function (RV fractional area change, 47.3±3.8%) and in patients with RV failure showing decreased RV systolic function (RV fractional area change, 26.6±3.1%). The mechanism of the effect of lipid peroxidation, mediated by 4-hydroxynonenal ([4HNE] a byproduct of lipid peroxidation) on mitochondrial function and structure was assessed in HL1 murine cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: RV failure was characterized by an increase in 4HNE adduction of metabolic and mitochondrial proteins (16 of 27 identified proteins), in particular electron transport chain proteins. Sarcomeric (myosin) and cytoskeletal proteins (desmin, tubulin) also underwent 4HNE adduction. RV failure showed lower oxidative phosphorylation (moderate RV hypertrophy, 287.6±19.75 versus RV failure, 137.8±11.57 pmol/[sec×mL]; P=0.0004), and mitochondrial structural damage. Using a cell model, we show that 4HNE decreases cell number and oxidative phosphorylation (control, 388.1±23.54 versus 4HNE, 143.7±11.64 pmol/[sec×mL]; P<0.0001). Carvedilol, a known antioxidant did not decrease 4HNE adduction of metabolic and mitochondrial proteins and did not improve oxidative phosphorylation. CONCLUSIONS: Metabolic, mitochondrial, sarcomeric, and cytoskeletal proteins are susceptible to 4HNE-adduction in patients with RV failure. 4HNE decreases mitochondrial oxygen consumption by inhibiting electron transport chain complexes. Carvedilol did not improve the 4HNE-mediated decrease in oxygen consumption. Strategies to decrease lipid peroxidation could improve mitochondrial energy generation and cardiomyocyte survival and improve RV failure in patients with congenital heart disease.


Subject(s)
Heart Defects, Congenital/physiopathology , Heart Failure/physiopathology , Myocardium/pathology , Ventricular Dysfunction, Right/physiopathology , Animals , Child , Child, Preschool , Energy Metabolism , Humans , Male , Mice , Young Adult
11.
Circulation ; 139(14): 1710-1724, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30586764

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disorder of the pulmonary circulation associated with loss and impaired regeneration of microvessels. Reduced pericyte coverage of pulmonary microvessels is a pathological feature of PAH and is caused partly by the inability of pericytes to respond to signaling cues from neighboring pulmonary microvascular endothelial cells (PMVECs). We have shown that activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment, but whether production and release of specific Wnt ligands by PMVECs are responsible for Wnt/planar cell polarity activation in pericytes is unknown. METHODS: Isolation of pericytes and PMVECs from healthy donor and PAH lungs was carried out with 3G5 or CD31 antibody-conjugated magnetic beads. Wnt expression profile of PMVECs was documented via quantitative polymerase chain reaction with a Wnt primer library. Exosome purification from PMVEC media was carried out with the ExoTIC device. Hemodynamic profile, right ventricular function, and pulmonary vascular morphometry were obtained in a conditional endothelium-specific Wnt5a knockout ( Wnt5aECKO) mouse model under normoxia, chronic hypoxia, and hypoxia recovery. RESULTS: Quantification of Wnt ligand expression in healthy PMVECs cocultured with pericytes demonstrated a 35-fold increase in Wnt5a, a known Wnt/planar cell polarity ligand. This Wnt5a spike was not seen in PAH PMVECs, which correlated with an inability to recruit pericytes in Matrigel coculture assays. Exosomes purified from media demonstrated an increase in Wnt5a content when healthy PMVECs were cocultured with pericytes, a finding that was not observed in exosomes of PAH PMVECs. Furthermore, the addition of either recombinant Wnt5a or purified healthy PMVEC exosomes increased pericyte recruitment to PAH PMVECs in coculture studies. Although no differences were noted in normoxia and chronic hypoxia, Wnt5aECKO mice demonstrated persistent pulmonary hypertension and right ventricular failure 4 weeks after recovery from chronic hypoxia, which correlated with significant reduction, muscularization, and decreased pericyte coverage of microvessels. CONCLUSIONS: We identify Wnt5a as a key mediator for the establishment of pulmonary endothelium-pericyte interactions, and its loss could contribute to PAH by reducing the viability of newly formed vessels. We speculate that therapies that mimic or restore Wnt5a production could help prevent loss of small vessels in PAH.


Subject(s)
Cell Movement , Endothelial Cells/metabolism , Pericytes/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Wnt-5a Protein/deficiency , Adolescent , Adult , Animals , Case-Control Studies , Cell Hypoxia , Cell Polarity , Cells, Cultured , Child , Coculture Techniques , Disease Models, Animal , Endothelial Cells/pathology , Exosomes/metabolism , Exosomes/pathology , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neovascularization, Pathologic , Paracrine Communication , Pericytes/pathology , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Rats , Wnt Signaling Pathway , Wnt-5a Protein/genetics
12.
Circ Res ; 122(2): 282-295, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29233845

ABSTRACT

RATIONALE: Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Paradigms have held that mitochondrial fission and fragmentation are the result of pathological stresses, such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in decreased mitochondrial function and cardiac impairment, suggesting that fission is important for maintaining cardiac and mitochondrial bioenergetic homeostasis. OBJECTIVE: The purpose of this study is to determine whether mitochondrial fission and fragmentation can be an adaptive mechanism used by the heart to augment mitochondrial and cardiac function during a normal physiological stress, such as exercise. METHODS AND RESULTS: We demonstrate a novel role for cardiac mitochondrial fission as a normal adaptation to increased energetic demand. During submaximal exercise, physiological mitochondrial fragmentation results in enhanced, rather than impaired, mitochondrial function and is mediated, in part, by ß1-adrenergic receptor signaling. Similar to pathological fragmentation, physiological fragmentation is induced by activation of dynamin-related protein 1; however, unlike pathological fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. Inhibition of fission with P110, Mdivi-1 (mitochondrial division inhibitor), or in mice with cardiac-specific dynamin-related protein 1 ablation significantly decreases exercise capacity. CONCLUSIONS: These findings demonstrate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise, as well as providing additional support for the evolving conceptual framework, where mitochondrial fission and fragmentation play a role in the balance between mitochondrial maintenance of normal physiology and response to disease.


Subject(s)
Adaptation, Physiological/physiology , Energy Metabolism/physiology , Mitochondrial Dynamics/physiology , Physical Conditioning, Animal/physiology , Adaptation, Physiological/drug effects , Animals , Energy Metabolism/drug effects , Male , Mice , Mice, Knockout , Mitochondrial Dynamics/drug effects , Physical Conditioning, Animal/methods , Quinazolinones/pharmacology
13.
Mol Phylogenet Evol ; 139: 106535, 2019 10.
Article in English | MEDLINE | ID: mdl-31207284

ABSTRACT

Madagascar is known as a biodiversity hotspot, providing an ideal natural laboratory for investigating the processes of avian diversification. Yet, the phylogeography of Madagascar's avifauna is still largely unexamined. In this study, we evaluated phylogeographic patterns and species limits within the Rufous Vanga, Schetba rufa, a monotypic genus of forest-dwelling birds endemic to the island. Using an integrative taxonomic approach, we synthesized data from over 4000 ultra-conserved element (UCE) loci, mitochondrial DNA, multivariate morphometrics, and ecological niche modeling to uncover two reciprocally monophyletic, geographically circumscribed, and morphologically distinct clades of Schetba. The two lineages are restricted to eastern and western Madagascar, respectively, with distributions broadly consistent with previously described subspecies. Based on their genetic and morphological distinctiveness, the two subspecies merit recognition as separate species. The bioclimatic transition between the humid east and dry west of Madagascar likely promoted population subdivision and drove speciation in Schetba during the Pleistocene. Our study is the first evidence that an East-West bioclimatic transition zone played a role in the speciation of birds within Madagascar.


Subject(s)
Climate , Genetic Speciation , Passeriformes/classification , Phylogeography , Animals , Base Sequence , Biodiversity , Cluster Analysis , DNA, Mitochondrial/genetics , Forests , Genetic Loci , Geography , Islands , Madagascar , Passeriformes/anatomy & histology , Passeriformes/genetics , Phylogeny , Principal Component Analysis
14.
Curr Opin Pediatr ; 31(5): 604-610, 2019 10.
Article in English | MEDLINE | ID: mdl-31356354

ABSTRACT

PURPOSE OF REVIEW: We aim to review select literature pertaining to congenital heart disease (CHD)-induced right ventricular (RV) function and failure. RECENT FINDINGS: We review recent findings pertaining to children and adults with repaired tetralogy of Fallot (rTOF), systemic RV and hypoplastic left heart syndrome (HLHS). We emphasize pathophysiological mechanisms contributing to RV dysfunction in these conditions, the risk factors for adverse outcomes and the continuing challenges in treating these patients. We discuss how recent pathology findings, as well as developments in imaging and computer modeling have broadened our understanding of the pathophysiology of these conditions. We further review developments in the molecular and cellular basis of RV failure; and in particular, the RV molecular response to stress in repaired tetralogy of Fallot (rTOF). We highlight some of the genetic complexities in HLHS and how these may influence the long-term outcomes in these patients. SUMMARY: Recent literature has led to new understandings in the pathology, pathophysiology, risk factors for adverse outcomes, molecular and genetic basis for RV dysfunction and failure in CHD. Although these findings provide new therapeutic targets, the treatment of RV failure at this time remains limited.


Subject(s)
Heart Defects, Congenital/physiopathology , Heart Failure/physiopathology , Ventricular Dysfunction, Right/physiopathology , Humans
15.
Pediatr Crit Care Med ; 20(11): 1034-1039, 2019 11.
Article in English | MEDLINE | ID: mdl-31517728

ABSTRACT

OBJECTIVES: To make recommendations on improving understanding of bleeding and thrombosis with pediatric extracorporeal life support including future research directions. DATA SOURCES: Evaluation of literature and consensus conferences of pediatric critical care and extracorporeal life support experts. STUDY SELECTION: A team of 10 experts with pediatric cardiac and extracorporeal membrane oxygenation experience and expertise met through the Pediatric Cardiac Intensive Care Society to review current knowledge and make recommendations for future research to establish "best practice" for anticoagulation management related to extracorporeal life support. DATA EXTRACTION/DATA SYNTHESIS: This white paper focuses on clinical understanding and limitations of current strategies to monitor anticoagulation. For each test of anticoagulation, limitations of current knowledge are addressed and future research directions suggested. CONCLUSIONS: No consensus on best practice for anticoagulation monitoring exists. Structured scientific evaluation to answer questions regarding anticoagulation monitoring and bleeding and thrombotic events should occur in multicenter studies using standardized approaches and well-defined endpoints. Outcomes related to need for component change, blood product administration, healthcare outcome, and economic assessment should be incorporated into studies. All centers should report data on patient receiving extracorporeal life support to a registry.


Subject(s)
Extracorporeal Membrane Oxygenation/adverse effects , Anticoagulants/administration & dosage , Anticoagulants/adverse effects , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Child , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/trends , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/pharmacology , Hemorrhage/prevention & control , Humans , Thrombosis/prevention & control , von Willebrand Factor/administration & dosage , von Willebrand Factor/adverse effects , von Willebrand Factor/pharmacology
16.
Pediatr Crit Care Med ; 20(11): 1027-1033, 2019 11.
Article in English | MEDLINE | ID: mdl-31274779

ABSTRACT

OBJECTIVES: To make practical and evidence-based recommendations on improving understanding of bleeding and thrombosis with pediatric extracorporeal life support and to make recommendations for research directions. DATA SOURCES: Evaluation of literature and consensus conferences of pediatric critical care and extracorporeal life support experts. STUDY SELECTION: A team of 10 experts with pediatric cardiac and extracorporeal membrane oxygenation experience and expertise met through the Pediatric Cardiac Intensive Care Society to review current knowledge and make recommendations for future research to establish "best practice" for anticoagulation management related to extracorporeal life support. DATA EXTRACTION/SYNTHESIS: The first of a two-part white article focuses on clinical understanding and limitations of medications in use for anticoagulation, including novel medications. For each medication, limitations of current knowledge are addressed and research recommendations are suggested to allow for more definitive clinical guidelines in the future. CONCLUSIONS: No consensus on best practice for anticoagulation exists. Structured scientific evaluation to answer questions regarding anticoagulant medication and bleeding and thrombotic events should occur in multicenter studies using standardized approaches and well-defined endpoints. Outcomes related to need for component change, blood product administration, healthcare outcome, and economic assessment should be incorporated into studies. All centers should report data on patients receiving extracorporeal life support to a registry. The Extracorporeal Life Support Organization registry, designed primarily for quality improvement purposes, remains the primary and most successful data repository to date.


Subject(s)
Extracorporeal Membrane Oxygenation/adverse effects , Hemorrhage/prevention & control , Thrombosis/prevention & control , Anticoagulants/administration & dosage , Anticoagulants/adverse effects , Anticoagulants/pharmacology , Antithrombins/administration & dosage , Antithrombins/adverse effects , Antithrombins/pharmacology , Blood Coagulation/drug effects , Child , Critical Illness/therapy , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/trends , Humans , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/pharmacology
17.
PLoS Genet ; 12(4): e1005963, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27058611

ABSTRACT

Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.


Subject(s)
Heart Septal Defects/genetics , Animals , Female , Heterozygote , Homozygote , Humans , Male , Mice , Mice, Knockout , Mutation , Pedigree
18.
Cardiol Young ; 29(2): 174-177, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30511598

ABSTRACT

There are substantial knowledge gaps, practice variation, and paucity of controlled trials owing to the relatively small number of patients with critical heart disease. The Pediatric Cardiac Intensive Care Society has recognised this knowledge gap as an area needing a more comprehensive and evidence-based approach to the management of the critically ill child with heart disease. To address this, the Pediatric Cardiac Intensive Care Society created a scientific statements and white papers committee. Scientific statements and white papers will present the current state-of-the-art in areas where controversy exists, providing clinicians with guidance in diagnostic and therapeutic strategies, particularly where evidence-based data are lacking. This paper provides a template for other societies and organisations faced with the task of developing scientific statements and white papers. We describe the methods used to perform a systematic literature search and evidence rating that will be used by all scientific statements and white papers emerging from the Pediatric Cardiac Intensive Care Society. The Pediatric Cardiac Intensive Care Society aims to revolutionise the care of children with heart disease by shifting our efforts from individual institution-based practices to national standardised protocols and to lay the ground work for multicentre high-impact research directions.


Subject(s)
Biomedical Research , Cardiology , Consensus , Critical Care/methods , Critical Illness/therapy , Periodicals as Topic , Societies, Medical , Child , Delivery of Health Care , Humans
19.
Mol Phylogenet Evol ; 121: 121-131, 2018 04.
Article in English | MEDLINE | ID: mdl-29305243

ABSTRACT

Molecular phylogenetic approaches have greatly improved our knowledge of the pattern and process of biological diversification across the globe; however, many regions remain poorly documented, even for well-studied vertebrate taxa. The Philippine archipelago, one of the least-studied 'biodiversity hotspots', is an ideal natural laboratory for investigating the factors driving diversification in an insular and geologically dynamic setting. We investigated the history and geography of diversification of the Philippine populations of a widespread montane bird, the White-browed Shortwing (Brachypteryx montana). Leveraging dense archipelago-wide sampling, we generated a multi-locus genetic dataset (one nuclear and two mtDNA markers), which we analyzed using phylogenetic, population genetic, and coalescent-based methods. Our results demonstrate that Philippine shortwings (1) likely colonized the Philippines from the Sunda Shelf to Mindanao in the late Miocene or Pliocene, (2) diversified across inter-island barriers into three divergent lineages during the Pliocene and early Pleistocene, (3) have not diversified within the largest island, Luzon, contrary to patterns observed in other montane taxa, and (4) colonized Palawan from the oceanic Philippines rather than from Borneo, challenging the assumption of Palawan functioning exclusively as a biogeographic extension of the Sunda Shelf. Additionally, our finding that divergent (c. 4.0 mya) lineages are coexisting in secondary sympatry on Mindanao without apparent gene flow suggests that the speciation process is likely complete for these shortwing lineages. Overall, these investigations provide insight into how topography and island boundaries influence diversification within remote oceanic archipelagos and echo the results of many other studies in demonstrating that taxonomic diversity continues to be underestimated in the Philippines.


Subject(s)
Biodiversity , Songbirds/genetics , Animals , Bayes Theorem , Calibration , DNA, Mitochondrial/genetics , Genetics, Population , Geography , Haplotypes/genetics , Islands , Likelihood Functions , Philippines , Phylogeny , Sequence Analysis, DNA , Time Factors
20.
Mol Phylogenet Evol ; 124: 16-26, 2018 07.
Article in English | MEDLINE | ID: mdl-29474976

ABSTRACT

Madagascar is renowned as a global biodiversity hotspot with high levels of microendemism. However, there are few molecular phylogenetic studies of Malagasy birds, particularly for forest-dwelling species, signifying a substantial gap in current measures of species diversity in the absence of genetic data. We evaluated species limits and explored patterns of diversification within the genus Newtonia (Family Vangidae), a group of forest-dwelling songbirds endemic to Madagascar. Our modern systematics approach combined genomic, morphometric, and ecological niche data to analyze the evolutionary history of the group. Our integrative analysis uncovered hidden species-level diversity within N. amphichroa, with two deeply divergent and morphologically distinct lineages isolated in different regions of humid forest. We describe the southern lineage as a new species. Conversely, N. brunneicauda, which we initially hypothesized may harbor cryptic diversity owing to its large distribution spanning a range of habitats, was found to have no distinct lineages and shared haplotypes across much of its distribution. The contrasting diversification patterns between Newtonia lineages may be the result of their elevational tolerances. Newtonia brunneicauda has a broad habitat tolerance and elevational range that appears to have facilitated population expansion and gene flow across the island, limiting opportunities for diversification. On the other hand, N. amphichroa is found predominantly in mid-elevation and montane humid forests, a restriction that appears to have promoted speciation associated with climatic fluctuations during the Pleistocene. Our findings indicate that species diversity of Malagasy forest-dwelling birds may be greater than currently recognized, suggesting an urgent need for further studies to quantify biodiversity in Madagascar's rapidly disappearing native forests.


Subject(s)
Biodiversity , Birds/classification , Forests , Phylogeny , Animals , Base Sequence , Birds/anatomy & histology , Gene Flow , Genetic Loci , Haplotypes/genetics , Islands , Likelihood Functions , Madagascar , Phylogeography , Principal Component Analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL