ABSTRACT
Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.
Subject(s)
Databases, Factual , Disease , Genes , Phenotype , Humans , Internet , Databases, Factual/standards , Software , Genes/genetics , Disease/geneticsABSTRACT
MOTIVATION: Creating knowledge bases and ontologies is a time consuming task that relies on manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrarily complex nested knowledge schemas. RESULTS: Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against an LLM to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for matched elements. We present examples of applying SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease relationships. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction methods, but greatly surpasses an LLM's native capability of grounding entities with unique identifiers. SPIRES has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any new training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. AVAILABILITY AND IMPLEMENTATION: SPIRES is available as part of the open source OntoGPT package: https://github.com/monarch-initiative/ontogpt.
Subject(s)
Knowledge Bases , Semantics , Databases, FactualABSTRACT
MOTIVATION: Advances in RNA sequencing technologies have achieved an unprecedented accuracy in the quantification of mRNA isoforms, but our knowledge of isoform-specific functions has lagged behind. There is a need to understand the functional consequences of differential splicing, which could be supported by the generation of accurate and comprehensive isoform-specific gene ontology annotations. RESULTS: We present isoform interpretation, a method that uses expectation-maximization to infer isoform-specific functions based on the relationship between sequence and functional isoform similarity. We predicted isoform-specific functional annotations for 85 617 isoforms of 17 900 protein-coding human genes spanning a range of 17 430 distinct gene ontology terms. Comparison with a gold-standard corpus of manually annotated human isoform functions showed that isoform interpretation significantly outperforms state-of-the-art competing methods. We provide experimental evidence that functionally related isoforms predicted by isoform interpretation show a higher degree of domain sharing and expression correlation than functionally related genes. We also show that isoform sequence similarity correlates better with inferred isoform function than with gene-level function. AVAILABILITY AND IMPLEMENTATION: Source code, documentation, and resource files are freely available under a GNU3 license at https://github.com/TheJacksonLaboratory/isopretEM and https://zenodo.org/record/7594321.
Subject(s)
Motivation , Software , Humans , Protein Isoforms/genetics , Alternative Splicing , Sequence Analysis, RNAABSTRACT
MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org.
Subject(s)
Biological Ontologies , COVID-19 , Humans , Pattern Recognition, Automated , Rare Diseases , Machine LearningABSTRACT
OBJECTIVE: Clinical deep phenotyping and phenotype annotation play a critical role in both the diagnosis of patients with rare disorders as well as in building computationally-tractable knowledge in the rare disorders field. These processes rely on using ontology concepts, often from the Human Phenotype Ontology, in conjunction with a phenotype concept recognition task (supported usually by machine learning methods) to curate patient profiles or existing scientific literature. With the significant shift in the use of large language models (LLMs) for most NLP tasks, we examine the performance of the latest Generative Pre-trained Transformer (GPT) models underpinning ChatGPT as a foundation for the tasks of clinical phenotyping and phenotype annotation. MATERIALS AND METHODS: The experimental setup of the study included seven prompts of various levels of specificity, two GPT models (gpt-3.5-turbo and gpt-4.0) and two established gold standard corpora for phenotype recognition, one consisting of publication abstracts and the other clinical observations. RESULTS: The best run, using in-context learning, achieved 0.58 document-level F1 score on publication abstracts and 0.75 document-level F1 score on clinical observations, as well as a mention-level F1 score of 0.7, which surpasses the current best in class tool. Without in-context learning, however, performance is significantly below the existing approaches. CONCLUSION: Our experiments show that gpt-4.0 surpasses the state of the art performance if the task is constrained to a subset of the target ontology where there is prior knowledge of the terms that are expected to be matched. While the results are promising, the non-deterministic nature of the outcomes, the high cost and the lack of concordance between different runs using the same prompt and input make the use of these LLMs challenging for this particular task.
Subject(s)
Knowledge , Language , Humans , Machine Learning , Phenotype , Rare DiseasesABSTRACT
Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%-50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.
Subject(s)
Computational Biology , Databases, Genetic , Genomics , Rare Diseases/diagnosis , Algorithms , Exome/genetics , Humans , Phenotype , Rare Diseases/genetics , SoftwareABSTRACT
Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm's parameters and data-related modeling choices are also both crucial and challenging. In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our methodology allowed a better understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.
Subject(s)
COVID-19 , Humans , Algorithms , Research Design , Bias , ProbabilityABSTRACT
Rare disease diagnostics and disease gene discovery have been revolutionized by whole-exome and genome sequencing but identifying the causative variant(s) from the millions in each individual remains challenging. The use of deep phenotyping of patients and reference genotype-phenotype knowledge, alongside variant data such as allele frequency, segregation, and predicted pathogenicity, has proved an effective strategy to tackle this issue. Here we review the numerous tools that have been developed to automate this approach and demonstrate the power of such an approach on several thousand diagnosed cases from the 100,000 Genomes Project. Finally, we discuss the challenges that need to be overcome if we are going to improve detection rates and help the majority of patients that still remain without a molecular diagnosis after state-of-the-art genomic interpretation.
Subject(s)
Exome , Rare Diseases , Exome/genetics , Genomics , Humans , Phenotype , Rare Diseases/diagnosis , Rare Diseases/genetics , Exome SequencingABSTRACT
BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflammation but have been associated with complications in community-acquired pneumonia. Observations shortly after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and in one case showed reduced risk associated with NSAID use. METHODS: A 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of 19,746 COVID-19 inpatients was constructed by matching cases (treated with NSAIDs at the time of admission) and 19,746 controls (not treated) from 857,061 patients with COVID-19 available for analysis. The primary outcome of interest was COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and all-cause mortality at any time following COVID-19 diagnosis. RESULTS: Logistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 95% CI: 0.53-0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not associated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47-0.56), invasive ventilation (OR: 0.59 95% CI: 0.55-0.64), AKI (OR: 0.67 95% CI: 0.63-0.72), or ECMO (OR: 0.51 95% CI: 0.36-0.7). In contrast, the odds ratios indicate reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these associations, indicating that comparatively weak or moderate confounder associations could explain away the observed associations. CONCLUSIONS: Study interpretation is limited by the observational design. Recording of NSAID use may have been incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the other measured outcomes. Our results confirm and extend analogous findings in previous observational studies using a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.
Subject(s)
Acute Kidney Injury , COVID-19 , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , COVID-19 Testing , Cohort Studies , Humans , Pandemics , Retrospective StudiesABSTRACT
In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.
Subject(s)
Computational Biology/methods , Genotype , Phenotype , Algorithms , Animals , Biological Ontologies , Databases, Genetic , Exome , Genetic Association Studies , Genetic Variation , Genomics , Humans , Internet , Software , Translational Research, Biomedical , User-Computer InterfaceABSTRACT
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains â¼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.
Subject(s)
Ants/genetics , Genome, Insect , Animals , Behavior, Animal , Binding Sites , Conserved Sequence , DNA Methylation , Evolution, Molecular , Gene Expression Regulation , Hymenoptera/genetics , Insect Proteins/genetics , MicroRNAs/genetics , Models, Genetic , Phylogeny , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA , Social Behavior , Species Specificity , Synteny , Transcription Factors/geneticsABSTRACT
BACKGROUND: Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant calls from exome sequencing of non-amplified NBS DNA from the same individuals. RESULTS: Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000-76,000 additional variants in amplified samples. After application of a unique kmer enumeration and variant detection method (RUFUS), only 38,000-47,000 additional variants are observed in amplified gDNA. This result suggests that roughly half of the amplification-introduced variants identified using GATK may be the result of mapping errors and read misalignment. CONCLUSIONS: Our results show that it is possible to obtain informative, high-quality data from exome analysis of whole genome amplified NBS with the important caveat that different data generation and analysis methods can affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified exomes.
Subject(s)
Exome , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Computational Biology/methods , Dried Blood Spot Testing/methods , Genome, Human , Humans , Infant, Newborn , Neonatal Screening/methodsABSTRACT
BACKGROUND: Accurate genomic variant detection is an essential step in gleaning medically useful information from genome data. However, low concordance among variant-calling methods reduces confidence in the clinical validity of whole genome and exome sequence data, and confounds downstream analysis for applications in genome medicine.Here we describe BAYSIC (BAYeSian Integrated Caller), which combines SNP variant calls produced by different methods (e.g. GATK, FreeBayes, Atlas, SamTools, etc.) into a more accurate set of variant calls. BAYSIC differs from majority voting, consensus or other ad hoc intersection-based schemes for combining sets of genome variant calls. Unlike other classification methods, the underlying BAYSIC model does not require training using a "gold standard" of true positives. Rather, with each new dataset, BAYSIC performs an unsupervised, fully Bayesian latent class analysis to estimate false positive and false negative error rates for each input method. The user specifies a posterior probability threshold according to the user's tolerance for false positive and false negative errors; lowering the posterior probability threshold allows the user to trade specificity for sensitivity while raising the threshold increases specificity in exchange for sensitivity. RESULTS: We assessed the performance of BAYSIC in comparison to other variant detection methods using ten low coverage (~5X) samples from The 1000 Genomes Project, a tumor/normal exome pair (40X), and exome sequences (40X) from positive control samples previously identified to contain clinically relevant SNPs. We demonstrated BAYSIC's superior variant-calling accuracy, both for somatic mutation detection and germline variant detection. CONCLUSIONS: BAYSIC provides a method for combining sets of SNP variant calls produced by different variant calling programs. The integrated set of SNP variant calls produced by BAYSIC improves the sensitivity and specificity of the variant calls used as input. In addition to combining sets of germline variants, BAYSIC can also be used to combine sets of somatic mutations detected in the context of tumor/normal sequencing experiments.
Subject(s)
Genome, Human , Software Design , Algorithms , Bayes Theorem , Exome , Humans , Mutation , Polymorphism, Single Nucleotide , ProbabilityABSTRACT
BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.
Subject(s)
Bees/genetics , Genes, Insect , Animals , Base Composition , Databases, Genetic , Interspersed Repetitive Sequences/genetics , Molecular Sequence Annotation , Open Reading Frames/genetics , Peptides/analysis , Sequence Analysis, RNA , Sequence Homology, Amino AcidABSTRACT
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.
Subject(s)
Ants/physiology , Genome, Insect/genetics , Plant Leaves/physiology , Symbiosis , Animals , Ants/genetics , Arginine/genetics , Arginine/metabolism , Base Sequence , Fungi/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Sequence Analysis, DNA , Serine Proteases/genetics , Serine Proteases/metabolismABSTRACT
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.
Subject(s)
Ants/genetics , Genome, Insect/genetics , Genomics/methods , Phylogeny , Animals , Ants/physiology , Base Sequence , California , DNA Methylation , Gene Library , Genetics, Population , Hierarchy, Social , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Receptors, Odorant/genetics , Sequence Analysis, DNAABSTRACT
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.
Subject(s)
Ants/genetics , Gene Regulatory Networks/genetics , Genome, Insect/genetics , Genomics/methods , Phylogeny , Animals , Ants/physiology , Base Sequence , Desert Climate , Hierarchy, Social , Molecular Sequence Data , North America , Phenotype , Polymorphism, Single Nucleotide/genetics , Receptors, Odorant/genetics , Sequence Analysis, DNAABSTRACT
Objective: Large Language Models such as GPT-4 previously have been applied to differential diagnostic challenges based on published case reports. Published case reports have a sophisticated narrative style that is not readily available from typical electronic health records (EHR). Furthermore, even if such a narrative were available in EHRs, privacy requirements would preclude sending it outside the hospital firewall. We therefore tested a method for parsing clinical texts to extract ontology terms and programmatically generating prompts that by design are free of protected health information. Materials and Methods: We investigated different methods to prepare prompts from 75 recently published case reports. We transformed the original narratives by extracting structured terms representing phenotypic abnormalities, comorbidities, treatments, and laboratory tests and creating prompts programmatically. Results: Performance of all of these approaches was modest, with the correct diagnosis ranked first in only 5.3-17.6% of cases. The performance of the prompts created from structured data was substantially worse than that of the original narrative texts, even if additional information was added following manual review of term extraction. Moreover, different versions of GPT-4 demonstrated substantially different performance on this task. Discussion: The sensitivity of the performance to the form of the prompt and the instability of results over two GPT-4 versions represent important current limitations to the use of GPT-4 to support diagnosis in real-life clinical settings. Conclusion: Research is needed to identify the best methods for creating prompts from typically available clinical data to support differential diagnostics.
ABSTRACT
Objectives: Concept embeddings are low-dimensional vector representations of concepts such as MeSH:D009203 (Myocardial Infarction), whose similarity in the embedded vector space reflects their semantic similarity. Here, we test the hypothesis that non-biomedical concept synonym replacement can improve the quality of biomedical concepts embeddings. Materials and methods: We developed an approach that leverages WordNet to replace sets of synonyms with the most common representative of the synonym set. Results: We tested our approach on 1055 concept sets and found that, on average, the mean intra-cluster distance was reduced by 8% in the vector-space. Assuming that homophily of related concepts in the vector space is desirable, our approach tends to improve the quality of embeddings. Discussion and Conclusion: This pilot study shows that non-biomedical synonym replacement tends to improve the quality of embeddings of biomedical concepts using the Word2Vec algorithm. We have implemented our approach in a freely available Python package available at https://github.com/TheJacksonLaboratory/wn2vec.
ABSTRACT
Large language models (LLM) have shown great promise in supporting differential diagnosis, but 23 available published studies on the diagnostic accuracy evaluated small cohorts (number of cases, 30-422, mean 104) and have evaluated LLM responses subjectively by manual curation (23/23 studies). The performance of LLMs for rare disease diagnosis has not been evaluated systematically. Here, we perform a rigorous and large-scale analysis of the performance of a GPT-4 in prioritizing candidate diagnoses, using the largest-ever cohort of rare disease patients. Our computational study used 5267 computational case reports from previously published data. Each case was formatted as a Global Alliance for Genomics and Health (GA4GH) phenopacket, in which clinical anomalies were represented as Human Phenotype Ontology (HPO) terms. We developed software to generate prompts from each phenopacket. Prompts were sent to Generative Pre-trained Transformer 4 (GPT-4), and the rank of the correct diagnosis, if present in the response, was recorded. The mean reciprocal rank of the correct diagnosis was 0.24 (with the reciprocal of the MRR corresponding to a rank of 4.2), and the correct diagnosis was placed in rank 1 in 19.2% of the cases, in the first 3 ranks in 28.6%, and in the first 10 ranks in 32.5%. Our study is the largest to be reported to date and provides a realistic estimate of the performance of GPT-4 in rare disease medicine.