Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
Add more filters

Publication year range
1.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36455558

ABSTRACT

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Subject(s)
Jews , White People , Humans , Jews/genetics , Genetics, Population , Genome, Human
2.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35366416

ABSTRACT

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Subject(s)
Asian People , DNA, Ancient , Genetics, Population , Asian People/genetics , Genome , History, Ancient , Human Migration/history , Humans , Sulfur
3.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470400

ABSTRACT

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Subject(s)
DNA, Ancient/analysis , Ethnicity/genetics , Gene Flow/genetics , Archaeology/methods , DNA, Mitochondrial/genetics , Ethnicity/history , Gene Flow/physiology , Genetic Variation/genetics , Genetics, Population/methods , Genome, Human/genetics , Genomics/methods , Haplotypes , History, Ancient , Human Migration/history , Humans , Mediterranean Region , Middle East , Sequence Analysis, DNA
4.
Cell ; 181(5): 1131-1145.e21, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32386546

ABSTRACT

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.


Subject(s)
Anthropology/methods , DNA, Ancient/analysis , Gene Flow/genetics , Central America , DNA, Mitochondrial/genetics , Gene Flow/physiology , Genetics, Population/methods , Haplotypes , Humans , Sequence Analysis, DNA , South America
5.
Cell ; 179(3): 729-735.e10, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31495572

ABSTRACT

We report an ancient genome from the Indus Valley Civilization (IVC). The individual we sequenced fits as a mixture of people related to ancient Iranians (the largest component) and Southeast Asian hunter-gatherers, a unique profile that matches ancient DNA from 11 genetic outliers from sites in Iran and Turkmenistan in cultural communication with the IVC. These individuals had little if any Steppe pastoralist-derived ancestry, showing that it was not ubiquitous in northwest South Asia during the IVC as it is today. The Iranian-related ancestry in the IVC derives from a lineage leading to early Iranian farmers, herders, and hunter-gatherers before their ancestors separated, contradicting the hypothesis that the shared ancestry between early Iranians and South Asians reflects a large-scale spread of western Iranian farmers east. Instead, sampled ancient genomes from the Iranian plateau and IVC descend from different groups of hunter-gatherers who began farming without being connected by substantial movement of people.


Subject(s)
DNA, Ancient/chemistry , Genome, Human , Human Migration , Pedigree , Population/genetics , Asian People/genetics , Evolution, Molecular , Humans , Iran , Pakistan
6.
Cell ; 171(1): 59-71.e21, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28938123

ABSTRACT

We assembled genome-wide data from 16 prehistoric Africans. We show that the anciently divergent lineage that comprises the primary ancestry of the southern African San had a wider distribution in the past, contributing approximately two-thirds of the ancestry of Malawi hunter-gatherers ∼8,100-2,500 years ago and approximately one-third of the ancestry of Tanzanian hunter-gatherers ∼1,400 years ago. We document how the spread of farmers from western Africa involved complete replacement of local hunter-gatherers in some regions, and we track the spread of herders by showing that the population of a ∼3,100-year-old pastoralist from Tanzania contributed ancestry to people from northeastern to southern Africa, including a ∼1,200-year-old southern African pastoralist. The deepest diversifications of African lineages were complex, involving either repeated gene flow among geographically disparate groups or a lineage more deeply diverging than that of the San contributing more to some western African populations than to others. We finally leverage ancient genomes to document episodes of natural selection in southern African populations. PAPERCLIP.


Subject(s)
Black People/genetics , Genome, Human , Africa , Bone and Bones/chemistry , DNA, Ancient/analysis , Female , Fossils , Genetics, Medical , Genetics, Population , Genome-Wide Association Study , Humans , Life Style , Male
7.
Nature ; 624(7990): 122-129, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993721

ABSTRACT

Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.


Subject(s)
Genetic Variation , Indigenous Peoples , Humans , Agriculture/history , California/ethnology , Caribbean Region/ethnology , Ethnicity/genetics , Ethnicity/history , Europe/ethnology , Genetic Variation/genetics , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, Ancient , History, Medieval , Human Migration/history , Indigenous Peoples/genetics , Indigenous Peoples/history , Islands , Language/history , Mexico/ethnology , Zea mays , Genome, Human/genetics , Genomics , Alleles
8.
Nature ; 615(7954): 866-873, 2023 03.
Article in English | MEDLINE | ID: mdl-36991187

ABSTRACT

The urban peoples of the Swahili coast traded across eastern Africa and the Indian Ocean and were among the first practitioners of Islam among sub-Saharan people1,2. The extent to which these early interactions between Africans and non-Africans were accompanied by genetic exchange remains unknown. Here we report ancient DNA data for 80 individuals from 6 medieval and early modern (AD 1250-1800) coastal towns and an inland town after AD 1650. More than half of the DNA of many of the individuals from coastal towns originates from primarily female ancestors from Africa, with a large proportion-and occasionally more than half-of the DNA coming from Asian ancestors. The Asian ancestry includes components associated with Persia and India, with 80-90% of the Asian DNA originating from Persian men. Peoples of African and Asian origins began to mix by about AD 1000, coinciding with the large-scale adoption of Islam. Before about AD 1500, the Southwest Asian ancestry was mainly Persian-related, consistent with the narrative of the Kilwa Chronicle, the oldest history told by people of the Swahili coast3. After this time, the sources of DNA became increasingly Arabian, consistent with evidence of growing interactions with southern Arabia4. Subsequent interactions with Asian and African people further changed the ancestry of present-day people of the Swahili coast in relation to the medieval individuals whose DNA we sequenced.


Subject(s)
African People , Asian , Genetics, Population , Female , Humans , Male , African People/genetics , Asian/genetics , History, Medieval , Indian Ocean , Tanzania , Kenya , Mozambique , Comoros , History, 15th Century , History, 16th Century , History, 17th Century , India/ethnology , Persia/ethnology , Arabia/ethnology , DNA, Ancient/analysis
9.
Nature ; 601(7894): 584-587, 2022 01.
Article in English | MEDLINE | ID: mdl-34937939

ABSTRACT

To explore kinship practices at chambered tombs in Early Neolithic Britain, here we combined archaeological and genetic analyses of 35 individuals who lived about 5,700 years ago and were entombed at Hazleton North long cairn1. Twenty-seven individuals are part of the first extended pedigree reconstructed from ancient DNA, a five-generation family whose many interrelationships provide statistical power to document kinship practices that were invisible without direct genetic data. Patrilineal descent was key in determining who was buried in the tomb, as all 15 intergenerational transmissions were through men. The presence of women who had reproduced with lineage men and the absence of adult lineage daughters suggest virilocal burial and female exogamy. We demonstrate that one male progenitor reproduced with four women: the descendants of two of those women were buried in the same half of the tomb over all generations. This suggests that maternal sub-lineages were grouped into branches whose distinctiveness was recognized during the construction of the tomb. Four men descended from non-lineage fathers and mothers who also reproduced with lineage male individuals, suggesting that some men adopted the children of their reproductive partners by other men into their patriline. Eight individuals were not close biological relatives of the main lineage, raising the possibility that kinship also encompassed social bonds independent of biological relatedness.


Subject(s)
Burial , DNA, Ancient , Adult , Archaeology , Child , Female , Humans , Male , Mothers , Pedigree
10.
Nature ; 603(7900): 290-296, 2022 03.
Article in English | MEDLINE | ID: mdl-35197631

ABSTRACT

Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa1-4. Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations3,5. Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80-20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch.


Subject(s)
Black People , DNA, Ancient , Genetics, Population , Africa South of the Sahara , Archaeology , Black People/genetics , Black People/history , DNA, Ancient/analysis , Gene Flow/genetics , Genome, Human/genetics , History, Ancient , Humans
11.
Nature ; 598(7882): 629-633, 2021 10.
Article in English | MEDLINE | ID: mdl-34526723

ABSTRACT

During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains1,2 and Mongolia3. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport4-6 and regular dietary dependence on meat and milk5, hard evidence for these economic features has not been found. Here we draw on proteomic analysis of dental calculus from individuals from the western Eurasian steppe to demonstrate a major transition in dairying at the start of the Bronze Age. The rapid onset of ubiquitous dairying at a point in time when steppe populations are known to have begun dispersing offers critical insight into a key catalyst of steppe mobility. The identification of horse milk proteins also indicates horse domestication by the Early Bronze Age, which provides support for its role in steppe dispersals. Our results point to a potential epicentre for horse domestication in the Pontic-Caspian steppe by the third millennium BC, and offer strong support for the notion that the novel exploitation of secondary animal products was a key driver of the expansions of Eurasian steppe pastoralists by the Early Bronze Age.


Subject(s)
Dairying/history , Human Migration , Proteome , Animals , Archaeology , Asia , Dental Calculus/metabolism , Domestication , Europe , Gene Flow , Grassland , History, Ancient , Horses , Humans , Milk
12.
Nature ; 599(7883): 41-46, 2021 11.
Article in English | MEDLINE | ID: mdl-34671160

ABSTRACT

We are a group of archaeologists, anthropologists, curators and geneticists representing diverse global communities and 31 countries. All of us met in a virtual workshop dedicated to ethics in ancient DNA research held in November 2020. There was widespread agreement that globally applicable ethical guidelines are needed, but that recent recommendations grounded in discussion about research on human remains from North America are not always generalizable worldwide. Here we propose the following globally applicable guidelines, taking into consideration diverse contexts. These hold that: (1) researchers must ensure that all regulations were followed in the places where they work and from which the human remains derived; (2) researchers must prepare a detailed plan prior to beginning any study; (3) researchers must minimize damage to human remains; (4) researchers must ensure that data are made available following publication to allow critical re-examination of scientific findings; and (5) researchers must engage with other stakeholders from the beginning of a study and ensure respect and sensitivity to stakeholder perspectives. We commit to adhering to these guidelines and expect they will promote a high ethical standard in DNA research on human remains going forward.


Subject(s)
Cadaver , DNA, Ancient/analysis , Guidelines as Topic , Human Genetics/ethics , Internationality , Molecular Biology/ethics , American Indian or Alaska Native , Anthropology/ethics , Archaeology/ethics , Community-Institutional Relations , Humans , Indigenous Peoples , Stakeholder Participation , Translations
13.
Am J Hum Genet ; 110(9): 1447-1453, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37541241

ABSTRACT

Ancient DNA studies have begun to explore the possibility of identifying identical DNA segments shared between historical and living people. This research requires access to large genetic datasets to maximize the likelihood of identifying previously unknown, close genetic connections. Direct-to-consumer genetic testing companies, such as 23andMe, Inc., manage by far the largest and most diverse genetic databases that can be used for this purpose. It is therefore important to think carefully about guidelines for carrying out collaborations between researchers and such companies. Such collaborations require consideration of ethical issues, including policies for sharing ancient DNA datasets, and ensuring reproducibility of research findings when access to privately controlled genetic datasets is limited. At the same time, they introduce unique possibilities for returning results to the research participants whose data are analyzed, including those who are identified as close genetic relatives of historical individuals, thereby enabling ancient DNA research to contribute to the restoration of information about ancestral connections that were lost over time, which can be particularly meaningful for families and groups where such history has not been well documented. We explore these issues by describing our experience designing and carrying out a study searching for genetic connections between 18th- and 19th-century enslaved and free African Americans who labored at Catoctin Furnace, Maryland, and 23andMe research participants. We share our experience in the hope of helping future researchers navigate similar ethical considerations, recognizing that our perspective is part of a larger conversation about best ethical practices.


Subject(s)
Communication , DNA, Ancient , Humans , Reproducibility of Results , DNA/genetics , Databases, Genetic
14.
Genome Res ; 33(4): 622-631, 2023 04.
Article in English | MEDLINE | ID: mdl-37072186

ABSTRACT

Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.


Subject(s)
DNA, Ancient , Petrous Bone , Humans , Powders , Plastics , DNA/genetics
15.
Nature ; 577(7792): 665-670, 2020 01.
Article in English | MEDLINE | ID: mdl-31969706

ABSTRACT

Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children-two of whom were buried approximately 8,000 years ago and two 3,000 years ago-from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group1-11. One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region12,13. However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today-as well as speakers of Bantu languages from across the continent-are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans.


Subject(s)
Black People/genetics , Black People/history , Feeding Behavior/ethnology , Human Migration/history , Phylogeny , Alleles , Animals , Archaeology , Burial , Cameroon , Child , Child, Preschool , Chromosomes, Human, Y/genetics , DNA, Ancient/analysis , Female , Genetic Markers/genetics , Genetics, Population , Genome, Human/genetics , Haplotypes/genetics , History, Ancient , Humans , Language/history , Male , Pan troglodytes/genetics , Principal Component Analysis
16.
PLoS Genet ; 19(9): e1010931, 2023 09.
Article in English | MEDLINE | ID: mdl-37676865

ABSTRACT

f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.


Subject(s)
African People , Demography , Phylogeny , Polymorphism, Single Nucleotide , Animals , Humans , Black People/genetics , Chromosome Mapping , Genotype , Neanderthals/genetics , Polymorphism, Single Nucleotide/genetics , African People/genetics , Demography/history , Biological Variation, Population/genetics , Models, Statistical , Bias
17.
Genome Res ; 32(11-12): 2068-2078, 2022.
Article in English | MEDLINE | ID: mdl-36517229

ABSTRACT

The strategy of in-solution enrichment for hundreds of thousands of single-nucleotide polymorphisms (SNPs) has been used to analyze >70% of individuals with genome-scale ancient DNA published to date. This approach makes it economical to study ancient samples with low proportions of human DNA and increases the rate of conversion of sampled remains into interpretable data. So far, nearly all such data have been generated using a set of bait sequences targeting about 1.24 million SNPs (the "1240k reagent"), but synthesis of the reagent has been cost-effective for only a few laboratories. In 2021, two companies, Daicel Arbor Biosciences and Twist Bioscience, made available assays that target the same core set of SNPs along with supplementary content. We test all three assays on a common set of 27 ancient DNA libraries and show that all three are effective at enriching many hundreds of thousands of SNPs. For all assays, one round of enrichment produces data that are as useful as two. In our testing, the "Twist Ancient DNA" assay produces the highest coverages, greatest uniformity on targeted positions, and almost no bias toward enriching one allele more than another relative to shotgun sequencing. We also identify hundreds of thousands of targeted SNPs for which there is minimal allelic bias when comparing 1240k data to either shotgun or Twist data. This facilitates coanalysis of the large data sets that have been generated using 1240k and Twist capture, as well as shotgun sequencing approaches.


Subject(s)
DNA, Ancient , Polymorphism, Single Nucleotide , Humans , DNA, Ancient/analysis , Sequence Analysis, DNA , DNA/genetics , Gene Library
18.
Nature ; 570(7760): 236-240, 2019 06.
Article in English | MEDLINE | ID: mdl-31168094

ABSTRACT

Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.


Subject(s)
Human Migration/history , Inuit/classification , Inuit/genetics , Phylogeny , Phylogeography , Africa , Alaska , Alleles , Arctic Regions , Asia, Southeastern , Canada , Europe , Genome, Human/genetics , Haplotypes , History, Ancient , Humans , Principal Component Analysis , Siberia/ethnology
19.
PLoS Genet ; 18(2): e1010036, 2022 02.
Article in English | MEDLINE | ID: mdl-35176016

ABSTRACT

The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.


Subject(s)
Asian People/genetics , Ethnicity/genetics , Asia, Southeastern/ethnology , Genetic Variation/genetics , Genetics, Population/methods , Haplotypes/genetics , Humans , India/ethnology , Language , Polymorphism, Single Nucleotide/genetics , Thailand/ethnology
20.
Proc Natl Acad Sci U S A ; 119(15): e2106743119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35389750

ABSTRACT

Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared "predicted" genetic contributions to height from paleogenomic data and "achieved" adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.


Subject(s)
Agriculture , Body Height , Farmers , Health , Skeleton , Adult , Agriculture/history , Body Height/genetics , Child , DNA, Ancient , Europe , Farmers/history , Genetic Variation , Genomics , Health/history , History, Ancient , Humans , Paleopathology , Skeleton/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL