Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Neuroimage ; 176: 364-371, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29733955

ABSTRACT

The dentato-rubro-thalamic tract (DRTT) regulates motor control, connecting the cerebellum to the thalamus. This tract is modulated by deep-brain stimulation in the surgical treatment of medically refractory tremor, especially in essential tremor, where high-frequency stimulation of the thalamus can improve symptoms. The DRTT is classically described as a decussating pathway, ascending to the contralateral thalamus. However, the existence of a nondecussating (i.e. ipsilateral) DRTT in humans was recently demonstrated, and these tracts are arranged in distinct regions of the superior cerebellar peduncle. We hypothesized that the ipsilateral DRTT is connected to specific thalamic nuclei and therefore may have unique functional relevance. The goals of this study were to confirm the presence of the decussating and nondecussating DRTT pathways, identify thalamic termination zones of each tract, and compare whether structural connectivity findings agree with functional connectivity. Diffusion-weighted imaging was used to perform probabilistic tractography of the decussating and nondecussating DRTT in young healthy subjects from the Human Connectome Project (n = 91) scanned using multi-shell diffusion-weighted imaging (270 directions; TR/TE = 5500/89 ms; spatial resolution = 1.25 mm isotropic). To define thalamic anatomical landmarks, a segmentation procedure based on the Morel Atlas was employed, and DRTT targeting was quantified based on the proportion of streamlines arriving at each nucleus. In parallel, functional connectivity analysis was performed using resting-state functional MRI (TR/TE = 720/33 ms; spatial resolution = 2 mm isotropic). It was found that the decussating and nondecussating DRTTs have significantly different thalamic endpoints, with the former preferentially targeting relatively anterior and lateral thalamic nuclei, and the latter connected to more posterior and medial nuclei (p < 0.001). Functional and structural connectivity measures were found to be significantly correlated (r = 0.45, p = 0.031). These findings provide new insight into pathways through which unilateral cerebellum can exert bilateral influence on movement and raise questions about the functional implications of ipsilateral cerebellar efferents.


Subject(s)
Cerebellum , Connectome/methods , Diffusion Tensor Imaging/methods , Neural Pathways , Red Nucleus , Thalamus , White Matter , Adult , Cerebellar Nuclei/anatomy & histology , Cerebellar Nuclei/diagnostic imaging , Cerebellar Nuclei/physiology , Cerebellum/anatomy & histology , Cerebellum/diagnostic imaging , Cerebellum/physiology , Female , Humans , Male , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Red Nucleus/anatomy & histology , Red Nucleus/diagnostic imaging , Red Nucleus/physiology , Thalamus/anatomy & histology , Thalamus/diagnostic imaging , Thalamus/physiology , White Matter/anatomy & histology , White Matter/diagnostic imaging , White Matter/physiology
SELECTION OF CITATIONS
SEARCH DETAIL