Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31978345

ABSTRACT

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Adenine/metabolism , Adenosine/metabolism , Adenosine Deaminase/metabolism , Chromatography, Liquid/methods , HEK293 Cells , Hep G2 Cells , Humans , Intracellular Signaling Peptides and Proteins/physiology , Mass Spectrometry/methods , Multifunctional Enzymes/genetics , Phosphorylation , Proteins/genetics , Purine Nucleotides/metabolism , Purines/metabolism
3.
Biochemistry ; 59(43): 4155-4162, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32818369

ABSTRACT

Microbial nucleic acids in the extracellular milieu are recognized in vertebrates by Toll-like receptors (TLRs), one of the most important families of innate immune receptors. TLR9 recognizes single-stranded unmethylated CpG DNA in endosomes. DNA binding induces TLR9 dimerization and activation of a potent inflammatory response. To provide insights on how DNA ligands induce TLR9 dimerization, we developed a detailed theoretical framework for equilibrium ligand binding, modeling the binding of the ssDNA at the two main sites on the TLR9 ectodomain. Light scattering and fluorescence anisotropy assays performed with recombinant TLR9 ectodomain and a panel of agonistic and antagonistic DNA ligands provide data that restrain the binding parameters, identify the likely ligand binding intermediates, and suggest cooperative modes of binding. This work brings us one step closer to establishing a rigorous biochemical understanding of how TLRs are activated by their ligands.


Subject(s)
Toll-Like Receptor 9/chemistry , Toll-Like Receptor 9/metabolism , Animals , Anisotropy , Binding Sites , CpG Islands/physiology , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Dynamic Light Scattering , Fluorescence Polarization , Humans , Hydrodynamics , Mice , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism
4.
Nat Genet ; 53(2): 205-214, 2021 02.
Article in English | MEDLINE | ID: mdl-33432184

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Epithelial Cells/metabolism , Animals , Binding Sites , Cells, Cultured , Chlorocebus aethiops , Exons , HEK293 Cells , Humans , Interferons/immunology , Protein Binding , Protein Isoforms/genetics , RNA Splice Sites , RNA-Seq , Respiratory System/cytology , Spike Glycoprotein, Coronavirus/metabolism , Transcriptome , Up-Regulation , Vero Cells
5.
Front Immunol ; 5: 342, 2014.
Article in English | MEDLINE | ID: mdl-25101084

ABSTRACT

Most organisms rely on innate immune receptors to recognize conserved molecular structures from invading microbes. Two essential innate immune receptors, RIG-I and MDA5, detect viral double-stranded RNA in the cytoplasm. The inflammatory response triggered by these RIG-I-like receptors (RLRs) is one of the first and most important lines of defense against infection. RIG-I recognizes short RNA ligands with 5'-triphosphate caps. MDA5 recognizes long kilobase-scale genomic RNA and replication intermediates. Ligand binding induces conformational changes and oligomerization of RLRs that activate the signaling partner MAVS on the mitochondrial and peroxisomal membranes. This signaling process is under tight regulation, dependent on post-translational modifications of RIG-I and MDA5, and on regulatory proteins including unanchored ubiquitin chains and a third RLR, LGP2. Here, we review recent advances that have shifted the paradigm of RLR signaling away from the conventional linear signaling cascade. In the emerging RLR signaling model, large multimeric signaling platforms generate a highly cooperative, self-propagating, and context-dependent signal, which varies with the subcellular localization of the signaling platform.

SELECTION OF CITATIONS
SEARCH DETAIL