Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(43): e2116122119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252029

ABSTRACT

Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.


Subject(s)
Amoeba , Biological Products , Dictyostelium , Polyketides , Amoeba/genetics , Biological Products/metabolism , Dictyostelium/physiology , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/metabolism
2.
Clin Infect Dis ; 78(Supplement_2): S160-S168, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662697

ABSTRACT

BACKGROUND: The Global Programme to Eliminate Lymphatic Filariasis (GPELF) aims to reduce and maintain infection levels through mass drug administration (MDA), but there is evidence of ongoing transmission after MDA in areas where Culex mosquitoes are the main transmission vector, suggesting that a more stringent criterion is required for MDA decision making in these settings. METHODS: We use a transmission model to investigate how a lower prevalence threshold (<1% antigenemia [Ag] prevalence compared with <2% Ag prevalence) for MDA decision making would affect the probability of local elimination, health outcomes, the number of MDA rounds, including restarts, and program costs associated with MDA and surveys across different scenarios. To determine the cost-effectiveness of switching to a lower threshold, we simulated 65% and 80% MDA coverage of the total population for different willingness to pay per disability-adjusted life-year averted for India ($446.07), Tanzania ($389.83), and Haiti ($219.84). RESULTS: Our results suggest that with a lower Ag threshold, there is a small proportion of simulations where extra rounds are required to reach the target, but this also reduces the need to restart MDA later in the program. For 80% coverage, the lower threshold is cost-effective across all baseline prevalences for India, Tanzania, and Haiti. For 65% MDA coverage, the lower threshold is not cost-effective due to additional MDA rounds, although it increases the probability of local elimination. Valuing the benefits of elimination to align with the GPELF goals, we find that a willingness to pay per capita government expenditure of approximately $1000-$4000 for 1% increase in the probability of local elimination would be required to make a lower threshold cost-effective. CONCLUSIONS: Lower Ag thresholds for stopping MDAs generally mean a higher probability of local elimination, reducing long-term costs and health impacts. However, they may also lead to an increased number of MDA rounds required to reach the lower threshold and, therefore, increased short-term costs. Collectively, our analyses highlight that lower target Ag thresholds have the potential to assist programs in achieving lymphatic filariasis goals.


Subject(s)
Cost-Benefit Analysis , Elephantiasis, Filarial , Mass Drug Administration , Elephantiasis, Filarial/prevention & control , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/economics , Humans , Mass Drug Administration/economics , Haiti/epidemiology , Tanzania/epidemiology , Prevalence , India/epidemiology , Animals , Disease Eradication/economics , Disease Eradication/methods , Filaricides/therapeutic use , Filaricides/administration & dosage , Filaricides/economics , Antigens, Helminth/blood , Culex
3.
Clin Infect Dis ; 78(Supplement_2): S117-S125, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662702

ABSTRACT

BACKGROUND: Lymphatic filariasis (LF) is a debilitating, poverty-promoting, neglected tropical disease (NTD) targeted for worldwide elimination as a public health problem (EPHP) by 2030. Evaluating progress towards this target for national programmes is challenging, due to differences in disease transmission and interventions at the subnational level. Mathematical models can help address these challenges by capturing spatial heterogeneities and evaluating progress towards LF elimination and how different interventions could be leveraged to achieve elimination by 2030. METHODS: Here we used a novel approach to combine historical geo-spatial disease prevalence maps of LF in Ethiopia with 3 contemporary disease transmission models to project trends in infection under different intervention scenarios at subnational level. RESULTS: Our findings show that local context, particularly the coverage of interventions, is an important determinant for the success of control and elimination programmes. Furthermore, although current strategies seem sufficient to achieve LF elimination by 2030, some areas may benefit from the implementation of alternative strategies, such as using enhanced coverage or increased frequency, to accelerate progress towards the 2030 targets. CONCLUSIONS: The combination of geospatial disease prevalence maps of LF with transmission models and intervention histories enables the projection of trends in infection at the subnational level under different control scenarios in Ethiopia. This approach, which adapts transmission models to local settings, may be useful to inform the design of optimal interventions at the subnational level in other LF endemic regions.


Subject(s)
Disease Eradication , Elephantiasis, Filarial , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Elephantiasis, Filarial/transmission , Ethiopia/epidemiology , Humans , Prevalence , Models, Theoretical , Health Policy
4.
Clin Infect Dis ; 78(Supplement_2): S108-S116, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662704

ABSTRACT

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as a public health problem by 2030. Although mass treatments have led to huge reductions in LF prevalence, some countries or regions may find it difficult to achieve elimination by 2030 owing to various factors, including local differences in transmission. Subnational projections of intervention impact are a useful tool in understanding these dynamics, but correctly characterizing their uncertainty is challenging. METHODS: We developed a computationally feasible framework for providing subnational projections for LF across 44 sub-Saharan African countries using ensemble models, guided by historical control data, to allow assessment of the role of subnational heterogeneities in global goal achievement. Projected scenarios include ongoing annual treatment from 2018 to 2030, enhanced coverage, and biannual treatment. RESULTS: Our projections suggest that progress is likely to continue well. However, highly endemic locations currently deploying strategies with the lower World Health Organization recommended coverage (65%) and frequency (annual) are expected to have slow decreases in prevalence. Increasing intervention frequency or coverage can accelerate progress by up to 5 or 6 years, respectively. CONCLUSIONS: While projections based on baseline data have limitations, our methodological advancements provide assessments of potential bottlenecks for the global goals for LF arising from subnational heterogeneities. In particular, areas with high baseline prevalence may face challenges in achieving the 2030 goals, extending the "tail" of interventions. Enhancing intervention frequency and/or coverage will accelerate progress. Our approach facilitates preimplementation assessments of the impact of local interventions and is applicable to other regions and neglected tropical diseases.


Subject(s)
Elephantiasis, Filarial , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Humans , Africa South of the Sahara/epidemiology , Prevalence , Disease Eradication/methods , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Filaricides/therapeutic use
5.
Bull World Health Organ ; 102(3): 204-215, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38420575

ABSTRACT

Objective: To explore the impact of mosquito collection methods, sampling intensity and target genus on molecular xenomonitoring detection of parasites causing lymphatic filariasis. Methods: We systematically searched five databases for studies that used two or more collection strategies for sampling wild mosquitoes, and employed molecular methods to assess the molecular xenomonitoring prevalence of parasites responsible for lymphatic filariasis. We performed generic inverse variance meta-analyses and explored sources of heterogeneity using subgroup analyses. We assessed methodological quality and certainty of evidence. Findings: We identified 25 eligible studies, with 172 083 mosquitoes analysed. We observed significantly higher molecular xenomonitoring prevalence with collection methods that target bloodfed mosquitoes compared to methods that target unfed mosquitoes (prevalence ratio: 3.53; 95% confidence interval, CI: 1.52-8.24), but no significant difference compared with gravid collection methods (prevalence ratio: 1.54; 95% CI: 0.46-5.16). Regarding genus, we observed significantly higher molecular xenomonitoring prevalence for anopheline mosquitoes compared to culicine mosquitoes in areas where Anopheles species are the primary vector (prevalence ratio: 6.91; 95% CI: 1.73-27.52). One study provided evidence that reducing the number of sampling sites did not significantly affect molecular xenomonitoring prevalence. Evidence of differences in molecular xenomonitoring prevalence between sampling strategies was considered to be of low certainty, due partly to inherent limitations of observational studies that were not explicitly designed for these comparisons. Conclusion: The choice of sampling strategy can significantly affect molecular xenomonitoring results. Further research is needed to inform the optimum strategy in light of logistical constraints and epidemiological contexts.


Subject(s)
Anopheles , Elephantiasis, Filarial , Humans , Animals , Elephantiasis, Filarial/epidemiology , Wuchereria bancrofti , Prevalence , Mosquito Vectors/parasitology , Anopheles/parasitology
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526668

ABSTRACT

Bacteria are inherently social organisms whose actions should ideally be studied within an interactive ecological context. We show that the exchange and modification of natural products enables two unrelated bacteria to defend themselves against a common predator. Amoebal predation is a major cause of death in soil bacteria and thus it exerts a strong selective pressure to evolve defensive strategies. A systematic analysis of binary combinations of coisolated bacteria revealed strains that were individually susceptible to predation but together killed their predator. This cooperative defense relies on a Pseudomonas species producing syringafactin, a lipopeptide, which induces the production of peptidases in a Paenibacillus strain. These peptidases then degrade the innocuous syringafactin into compounds, which kill the predator. A combination of bioprospecting, coculture experiments, genome modification, and transcriptomics unravel this novel natural product-based defense strategy.


Subject(s)
Bacteria/metabolism , Lipopeptides/metabolism , Predatory Behavior/physiology , Amoeba/physiology , Animals , Bacteria/classification , Bacteria/growth & development , Gene Expression Profiling , Lipopeptides/chemistry , Paenibacillus/cytology , Phylogeny , Pseudomonas/cytology , Soil Microbiology
7.
Clin Infect Dis ; 72(Suppl 3): S203-S209, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33906238

ABSTRACT

BACKGROUND: Molecular xenomonitoring (MX), the detection of pathogen DNA in mosquitoes, is a recommended approach to support lymphatic filariasis (LF) elimination efforts. Potential roles of MX include detecting presence of LF in communities and quantifying progress towards elimination of the disease. However, the relationship between MX results and human prevalence is poorly understood. METHODS: We conducted a systematic review and meta-analysis from all previously conducted studies that reported the prevalence of filarial DNA in wild-caught mosquitoes (MX rate) and the corresponding prevalence of microfilaria (mf) in humans. We calculated a pooled estimate of MX sensitivity for detecting positive communities at a range of mf prevalence values and mosquito sample sizes. We conducted a linear regression to evaluate the relationship between mf prevalence and MX rate. RESULTS: We identified 24 studies comprising 144 study communities. MX had an overall sensitivity of 98.3% (95% confidence interval, 41.5-99.9%) and identified 28 positive communities that were negative in the mf survey. Low sensitivity in some studies was attributed to small mosquito sample sizes (<1000) and very low mf prevalence (<0.25%). Human mf prevalence and mass drug administration status accounted for approximately half of the variation in MX rate (R2 = 0.49, P < .001). Data from longitudinal studies showed that, within a given study area, there is a strong linear relationship between MX rate and mf prevalence (R2 = 0.78, P < .001). CONCLUSIONS: MX shows clear potential as tool for detecting communities where LF is present and as a predictor of human mf prevalence.


Subject(s)
Culicidae , Elephantiasis, Filarial , Animals , Diagnostic Tests, Routine , Elephantiasis, Filarial/drug therapy , Humans , Mass Drug Administration , Microfilariae , Prevalence , Wuchereria bancrofti
8.
Exerc Sport Sci Rev ; 49(2): 77-87, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33481454

ABSTRACT

Exercise is now considered medicine in numerous chronic conditions and is essentially without side effects. We hypothesize that exercise is primary, secondary, and tertiary prevention at different stages of hip osteoarthritis (preclinical, mild-moderate, and severe hip osteoarthritis) and after total hip arthroplasty.


Subject(s)
Osteoarthritis, Hip , Exercise , Humans
9.
Pestic Biochem Physiol ; 165: 104464, 2020 May.
Article in English | MEDLINE | ID: mdl-32359546

ABSTRACT

The glutathione S-transferases (GSTs) are enzymes involved in several distinct biological processes. In insects, the GSTs, especially delta and epsilon classes, play a key role in the metabolism of xenobiotics used to control insect populations. Here, we investigated its potential role in temephos resistance, examining the GSTE2 gene from susceptible (RecL) and resistant (RecR) strains of the mosquito Aedes aegypti, vector for several pathogenic arboviruses. Total GST enzymatic activity and the GSTE2 gene expression profile were evaluated, with the GSTE2 cDNA and genomic loci sequenced from both strains. Recombinant GSTE2 and mutants were produced in a heterologous expression system and assayed for enzyme kinetic parameters. These proteins also had their 3D structure predicted through molecular modeling. Our results showed that RecR has a profile of total GST enzymatic activity higher than RecL, with the expression of the GSTE2 gene in resistant larvae increasing six folds. Four exclusive RecR mutations were observed (L111S, I150V, E178A and A198E), which were absent in the laboratory susceptible strains. The enzymatic activity of the recombinant GSTE2 showed different kinetic parameters, with the GSTE2 RecR showing an enhanced ability to metabolize its substrate. The I150V mutation was shown to induce significant changes in catalytic parameters and a 3D modeling of GSTE2 mapped two of the RecR changes (L111S and I150V) near the enzyme's catalytic pocket, also implying an impact on its catalytic activity. Our results reinforce a potential role for GSTE2 in the metabolic resistance phenotype while contributing to the understanding of the molecular basis for the resistance mechanism.


Subject(s)
Aedes , Insecticides , Animals , Insecticide Resistance , Mosquito Vectors , Temefos
10.
Malar J ; 18(1): 96, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30909928

ABSTRACT

BACKGROUND: Community composition of Anopheles mosquitoes, and their host-seeking and peridomestic behaviour, are important factors affecting malaria transmission. In this study, barrier screen sampling was used to investigate species composition, abundance, and nocturnal activity of Anopheles populations in villages of Papua New Guinea. METHODS: Mosquitoes were sampled from 6 pm to 6 am in five villages from 2012 to 2016. The barrier screens were positioned between the village houses and the perimeter of villages where cultivated and wild vegetation ("the bush") grew thickly. Female Anopheles that rested on either village or bush side of the barrier screens, as they commuted into and out of the villages, were captured. Similarity in species composition among villages was assessed. Mosquitoes captured on village and bush sides of the barrier screens were sorted by feeding status and by hour of collection, and their numbers were compared using negative binomial generalized linear models. RESULTS: Females of seven Anopheles species were present in the sample. Species richness ranged from four to six species per village, but relative abundance was highly uneven within and between villages, and community composition was similar for two pairs of villages and highly dissimilar in a fifth. For most Anopheles populations, more unfed than blood-fed mosquitoes were collected from the barrier screens. More blood-fed mosquitoes were found on the side of the barrier screens facing the village and relatively more unfed ones on the bush side, suggesting commuting behaviour of unfed host-seeking females into the villages from nearby bush and commuting of blood-fed females away from villages towards the bush. For most populations, the majority of host-seeking mosquitoes arrived in the village before midnight when people were active and unprotected from the mosquitoes by bed nets. CONCLUSION: The uneven distribution of Anopheles species among villages, with each site dominated by different species, even among nearby villages, emphasizes the importance of vector heterogeneity in local malaria transmission and control. Yet, for most species, nocturnal activity patterns of village entry and host seeking predominantly occurred before midnight indicating common behaviours across species and populations relative to human risk of exposure to Anopheles bites.


Subject(s)
Anopheles/physiology , Biodiversity , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Anopheles/classification , Circadian Rhythm , Feeding Behavior , Female , Mosquito Vectors/classification , Papua New Guinea , Population Density
11.
Proc Biol Sci ; 285(1871)2018 01 31.
Article in English | MEDLINE | ID: mdl-29386362

ABSTRACT

It is well known that individuals in the same community can be exposed to a highly variable number of mosquito bites. This heterogeneity in bite exposure has consequences for the control of vector-borne diseases because a few people may be contributing significantly to transmission. However, very few studies measure sources of heterogeneity in a way which is relevant to decision-making. We investigate the relationship between two classic measures of heterogeneity, spatial and individual, within the context of lymphatic filariasis, a parasitic mosquito-borne disease. Using infection and mosquito-bite data for five villages in Papua New Guinea, we measure biting characteristics to model what impact bed-nets have had on control of the disease. We combine this analysis with geospatial modelling to understand the spatial relationship between disease indicators and nightly mosquito bites. We found a weak association between biting and infection heterogeneity within villages. The introduction of bed-nets increased biting heterogeneity, but the reduction in mean biting more than compensated for this, by reducing prevalence closer to elimination thresholds. Nightly biting was explained by a spatial heterogeneity model, while parasite load was better explained by an individual heterogeneity model. Spatial and individual heterogeneity are qualitatively different with profoundly different policy implications.


Subject(s)
Anopheles/physiology , Elephantiasis, Filarial/prevention & control , Insect Bites and Stings/epidemiology , Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Environment , Female , Humans , Insect Bites and Stings/etiology , Male , Models, Theoretical , Papua New Guinea/epidemiology , Prevalence , Spatial Analysis
12.
Malar J ; 17(1): 164, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29653593

ABSTRACT

BACKGROUND: The effectiveness of long-lasting insecticidal-treated nets (LLINs) and indoor residual spraying (IRS) for malaria control is threatened by resistance to commonly used pyrethroid insecticides. Rotations, mosaics, combinations, or mixtures of insecticides from different complementary classes are recommended by the World Health Organization (WHO) for mitigating against resistance, but many of the alternatives to pyrethroids are prohibitively expensive to apply in large national IRS campaigns. Recent evaluations of window screens and eave baffles (WSEBs) treated with pirimiphos-methyl (PM), to selectively target insecticides inside houses, demonstrated malaria vector mortality rates equivalent or superior to IRS. However, the durability of efficacy when co-applied with polyacrylate-binding agents (BA) remains to be established. This study evaluated whether WSEBs, co-treated with PM and BA have comparable wash resistance to LLINs and might therefore remain insecticidal for years rather than months. METHODS: WHO-recommended wire ball assays of insecticidal efficacy were applied to polyester netting treated with or without BA plus 1 or 2 g/sq m PM. They were then tested for insecticidal efficacy using fully susceptible insectary-reared Anopheles gambiae mosquitoes, following 0, 5, 10, 15, then 20 washes as per WHO-recommended protocols for accelerated ageing of LLINs. This was followed by a small-scale field trial in experimental huts to measure malaria vector mortality achieved by polyester netting WSEBs treated with BA and 2 g/sq m PM after 0, 10 and then 20 standardized washes, alongside recently applied IRS using PM. RESULTS: Co-treatment with BA and either dosage of PM remained insecticidal over 20 washes in the laboratory. In experimental huts, WSEBs treated with PM plus BA consistently killed similar proportions of Anopheles arabiensis mosquitoes to PM-IRS (both consistently ≥ 94%), even after 20 washes. CONCLUSION: Co-treating WSEBs with both PM and BA results in wash-resistant insecticidal activity comparable with LLINs. Insecticide treatments for WSEBs may potentially last for years rather than months, therefore, reducing insecticide consumption by an order of magnitude relative to IRS. However, durability of WSEBs will still have to be assessed in real houses under representative field conditions of exposure to wear and tear, sunlight and rain.


Subject(s)
Anopheles , Insecticides , Mosquito Control , Mosquito Vectors , Organothiophosphorus Compounds , Pesticide Residues , Animals , Housing , Zambia
13.
Parasitology ; 145(13): 1783-1791, 2018 11.
Article in English | MEDLINE | ID: mdl-29898803

ABSTRACT

Monitoring vectors is relevant to ascertain transmission of lymphatic filariasis (LF). This may require the best sampling method that can capture high numbers of specific species to give indication of transmission. Gravid anophelines are good indicators for assessing transmission due to close contact with humans through blood meals. This study compared the efficiency of an Anopheles gravid trap (AGT) with other mosquito collection methods including the box and the Centres for Disease Control and Prevention gravid, light, exit and BioGent-sentinel traps, indoor resting collection (IRC) and pyrethrum spray catches across two endemic regions of Ghana. The AGT showed high trapping efficiency by collecting the highest mean number of anophelines per night in the Western (4.6) and Northern (7.3) regions compared with the outdoor collection methods. Additionally, IRC was similarly efficient in the Northern region (8.9) where vectors exhibit a high degree of endophily. AGT also showed good trapping potential for collecting Anopheles melas which is usually difficult to catch with existing methods. Screening of mosquitoes for infection showed a 0.80-3.01% Wuchereria bancrofti and 2.15-3.27% Plasmodium spp. in Anopheles gambiae. The AGT has shown to be appropriate for surveying Anopheles populations and can be useful for xenomonitoring for both LF and malaria.


Subject(s)
Anopheles/parasitology , Entomology/methods , Mosquito Control/methods , Mosquito Vectors/parasitology , Plasmodium/isolation & purification , Wuchereria bancrofti/isolation & purification , Animals , Elephantiasis, Filarial/transmission , Endemic Diseases , Entomology/instrumentation , Female , Ghana , Mosquito Control/instrumentation
15.
J Infect Dis ; 215(5): 790-797, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28007921

ABSTRACT

Background: Behavioral resilience in mosquitoes poses a significant challenge to mosquito control. Although behavior changes in anopheline vectors have been reported over the last decade, there are no empirical data to suggest they compromise the efficacy of vector control in reducing malaria transmission. Methods: In this study, we quantified human exposure to both bites and infective bites of a major malaria vector in Papua New Guinea over the course of 4 years surrounding nationwide bednet distribution. We also quantified malaria infection prevalence in the human population during the same time period. Results: We observed a shift in mosquito biting to earlier hours of the evening, before individuals are indoors and protected by bednets, followed by a return to preintervention biting rates. As a result, net users and non-net users experienced higher levels of transmission than before the intervention. The personal protection provided by a bednet decreased over the study period and was lowest in the adult population, who may be an important reservoir for transmission. Malaria prevalence decreased in only 1 of 3 study villages after the distribution. Discussion: This study highlights the necessity of validating and deploying vector control measures targeting outdoor exposure to control and eliminate malaria.


Subject(s)
Anopheles , Feeding Behavior , Insect Bites and Stings/epidemiology , Insecticide-Treated Bednets , Malaria/epidemiology , Mosquito Control , Adolescent , Adult , Animals , Anopheles/parasitology , Behavior, Animal , Child , Child, Preschool , Female , Humans , Insect Bites and Stings/prevention & control , Insect Vectors/parasitology , Longitudinal Studies , Malaria/prevention & control , Male , Models, Theoretical , Papua New Guinea , Prevalence , Young Adult
16.
Malar J ; 16(1): 234, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28578667

ABSTRACT

BACKGROUND: Genus Anopheles is a major mosquito group of interest in Sri Lanka as it includes vectors of malaria and its members exist as species complexes. Taxonomy of the group is mainly based on morphological features, which are not conclusive and can be easily erased while handling the specimens. A combined effort, using morphology and DNA barcoding (using the markers cytochrome c oxidase subunit I (COI) gene and internal transcribed spacer 2 (ITS2) region, was made during the present study to recognize anophelines collected from eight districts of Sri Lanka for the first time. METHODS: Cytochrome c oxidase subunit I and ITS2 regions of morphologically identified anopheline mosquitoes from Sri Lanka were sequenced. These sequences together with GenBank sequences were used in phylogenetic tree construction and molecular characterization of mosquitoes. RESULTS: According to morphological identification, the field-collected adult mosquitoes belonged to 15 species, i.e., Anopheles aconitus, Anopheles annularis, Anopheles barbirostris, Anopheles culicifacies, Anopheles jamesii, Anopheles karwari, Anopheles maculatus, Anopheles nigerrimus, Anopheles pallidus, Anopheles peditaeniatus, Anopheles pseudojamesi, Anopheles subpictus, Anopheles tessellatus, Anopheles vagus, and Anopheles varuna. However, analysis of 123 COI sequences (445 bp) (16 clades supported by strong bootstrap value in the neighbour joining tree and inter-specific distances of >3%) showed that there are 16 distinct species. Identity of the morphologically identified species, except An. subpictus, was comparable with the DNA barcoding results. COI sequence analysis showed that morphologically identified An. subpictus is composed of two genetic entities: An. subpictus species A and species B (inter-specific K2P distance 0.128). All the four haplotypes of An. culicifacies discovered during the present study belonged to a single species. ITS2 sequences (542 bp) were obtained for all the species except for An. barbirostris, An. subpictus species B, An. tessellatus, and An. varuna. Each of these sequences was represented by a single species-specific haplotype. CONCLUSIONS: The present study reflects the importance and feasibility of COI and ITS2 genetic markers in identifying anophelines and their sibling species, and the significance of integrated systematic approach in mosquito taxonomy. Wide distribution of malaria vectors in the country perhaps indicates the potential for re-emergence of malaria in the country.


Subject(s)
Anopheles/classification , Insect Proteins/genetics , Animals , Anopheles/anatomy & histology , Anopheles/genetics , DNA Barcoding, Taxonomic , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Phylogeny , Sequence Analysis, DNA , Sri Lanka
18.
N Engl J Med ; 369(8): 745-53, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23964936

ABSTRACT

BACKGROUND: Global efforts to eliminate lymphatic filariasis are based on the annual mass administration of antifilarial drugs to reduce the microfilaria reservoir available to the mosquito vector. Insecticide-treated bed nets are being widely used in areas in which filariasis and malaria are coendemic. METHODS: We studied five villages in which five annual mass administrations of antifilarial drugs, which were completed in 1998, reduced the transmission of Wuchereria bancrofti, one of the nematodes that cause lymphatic filariasis. A total of 21,899 anopheles mosquitoes were collected for 26 months before and 11 to 36 months after bed nets treated with long-lasting insecticide were distributed in 2009. We evaluated the status of filarial infection and the presence of W. bancrofti DNA in anopheline mosquitoes before and after the introduction of insecticide-treated bed nets. We then used a model of population dynamics to estimate the probabilities of transmission cessation. RESULTS: Village-specific rates of bites from anopheline mosquitoes ranged from 6.4 to 61.3 bites per person per day before the bed-net distribution and from 1.1 to 9.4 bites for 11 months after distribution (P<0.001). During the same period, the rate of detection of W. bancrofti in anopheline mosquitoes decreased from 1.8% to 0.4% (P=0.005), and the rate of detection of filarial DNA decreased from 19.4% to 14.9% (P=0.13). The annual transmission potential was 5 to 325 infective larvae inoculated per person per year before the bed-net distribution and 0 after the distribution. Among all five villages with a prevalence of microfilariae of 2 to 38%, the probability of transmission cessation increased from less than 1.0% before the bed-net distribution to a range of 4.9 to 95% in the 11 months after distribution. CONCLUSIONS: Vector control with insecticide-treated bed nets is a valuable tool for W. bancrofti elimination in areas in which anopheline mosquitoes transmit the parasite. (Funded by the U.S. Public Health Service and the National Institutes of Health.).


Subject(s)
Elephantiasis, Filarial/prevention & control , Insecticide-Treated Bednets , Mosquito Control/methods , Wuchereria bancrofti , Animals , Anopheles/physiology , Elephantiasis, Filarial/transmission , Humans , Insect Bites and Stings/epidemiology , Insect Vectors , Insecticides , Nitriles , Papua New Guinea , Prevalence , Pyrethrins
19.
Mol Ecol ; 25(7): 1465-77, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26850696

ABSTRACT

Wuchereria bancrofti is a parasitic nematode and the primary cause of lymphatic filariasis--a disease specific to humans. W. bancrofti currently infects over 90 million people throughout the tropics and has been acknowledged by the world health organization as a vulnerable parasite. Current research has focused primarily on the clinical manifestations of disease and little is known about the evolutionary history of W. bancrofti. To improve upon knowledge of the evolutionary history of W. bancrofti, we whole genome sequenced 13 W. bancrofti larvae. We circumvent many of the difficulties of multiple infections by sampling larvae directly from mosquitoes that were experimentally inoculated with infected blood. To begin, we used whole genome data to reconstruct the historical population size. Our results support a history of fluctuating population sizes that can be correlated with human migration and fluctuating mosquito abundances. Next, we reconstructed the putative pedigree of W. bancrofti worms within an infection using the kinship coefficient. We deduced that there are full-sib and half-sib relationships residing within the same larval cohort. Through combined analysis of the mitochondrial and nuclear genomes we concluded that this is likely a results of polyandrous mating, the first time reported for W. bancrofti. Lastly, we scanned the genomes for signatures of natural selection. Annotation of putative selected regions identified proteins that may have aided in a parasitic life style or may have evolved to protect against current drug treatments. We discuss our results in the greater context of understanding the biology of an animal with a unique life history and ecology.


Subject(s)
Culicidae/parasitology , Genetics, Population , Genome, Helminth , Wuchereria bancrofti/genetics , Animals , Genome, Mitochondrial , Larva , Papua New Guinea , Phylogeny , Selection, Genetic
20.
Malar J ; 15: 25, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26753618

ABSTRACT

BACKGROUND: The major malaria vectors of Papua New Guinea exhibit heterogeneities in distribution, biting behaviour and malaria infection levels. Long-lasting, insecticide-treated nets (LLINs), distributed as part of the National Malaria Control Programme, are the primary intervention targeting malaria transmission. This study evaluated the impact of LLINs on anopheline density, species composition, feeding behaviour, and malaria transmission. METHODS: Mosquitoes were collected by human landing catch in 11 villages from East Sepik Province and Madang Province. Mosquitoes were collected for 3 years (1 year before distribution and 2 years after), and assayed to determine mosquito species and Plasmodium spp. infection prevalence. The influence of weather conditions and the presence of people and animals on biting density was determined. Determinants of biting density and sporozoite prevalence were analysed by generalized estimating equations (GEE). RESULTS: Mosquito biting rates and entomological inoculation rates decreased significantly after the distribution. Plasmodium falciparum and P. vivax sporozoite prevalence decreased in year 2, but increased in year 3, suggesting the likelihood of resurgence in transmission if low biting rates are not maintained. An earlier shift in the median biting time of Anopheles punctulatus and An. farauti s.s. was observed. However, this was not accompanied by an increase in the proportion of infective bites occurring before 2200 hours. A change in species composition was observed, which resulted in dominance of An. punctulatus in Dreikikir region, but a decrease in An. punctulatus in the Madang region. When controlling for village and study year, An. farauti s.s., An. koliensis and An. punctulatus were equally likely to carry P. vivax sporozoites. However, An. punctulatus was significantly more likely than An. farauti s.s. (OR 0.14; p = 0.007) or An. koliensis (OR 0.27; p < 0.001) to carry P. falciparum sporozoites. CONCLUSIONS: LLINs had a significant impact on malaria transmission, despite exophagic and crepuscular feeding behaviours of dominant vectors. Changes in species composition and feeding behaviour were observed, but their epidemiological significance will depend on their durability over time.


Subject(s)
Insecticides/therapeutic use , Malaria/transmission , Mosquito Control/methods , Mosquito Nets , Animals , Anopheles/parasitology , Humans , Insect Vectors , Malaria/drug therapy , Malaria/parasitology , Papua New Guinea
SELECTION OF CITATIONS
SEARCH DETAIL