Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Cancer ; 152(2): 308-319, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36054558

ABSTRACT

Detection of tumor progression in patients with glioblastoma remains a major challenge. Extracellular vesicles (EVs) are potential biomarkers and can be detected in the blood of patients with glioblastoma. In our study, we evaluated the potential of serum-derived EVs from glioblastoma patients to serve as biomarker for tumor progression. EVs from serum of glioblastoma patients and healthy volunteers were separated by size exclusion chromatography and ultracentrifugation. EV markers were defined by using a proximity-extension assay and bead-based flow cytometry. Tumor progression was defined according to modified RANO criteria. EVs from the serum of glioblastoma patients (n = 67) showed an upregulation of CD29, CD44, CD81, CD146, C1QA and histone H3 as compared to serum EVs from healthy volunteers (P value range: <.0001 to .08). For two independent cohorts of glioblastoma patients, we noted upregulation of C1QA, CD44 and histone H3 upon tumor progression, but not in patients with stable disease. In a multivariable logistic regression analysis, a combination of CD29, CD44, CD81, C1QA and histone H3 correlated with RANO-defined tumor progression with an AUC of 0.76. Measurement of CD29, CD44, CD81, C1QA and histone H3 in serum-derived EVs of glioblastoma patients, along with standard MRI assessment, has the potential to improve detection of true tumor progression and thus could be a useful biomarker for clinical decision making.


Subject(s)
Extracellular Vesicles , Glioblastoma , Humans , Histones , Blood Proteins , Integrin beta1
2.
Cell Commun Signal ; 21(1): 276, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803478

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) originating from the central nervous system (CNS) can enter the blood stream and carry molecules characteristic of disease states. Therefore, circulating CNS-derived EVs have the potential to serve as liquid-biopsy markers for early diagnosis and follow-up of neurodegenerative diseases and brain tumors. Monitoring and profiling of CNS-derived EVs using multiparametric analysis would be a major advance for biomarker as well as basic research. Here, we explored the performance of a multiplex bead-based flow-cytometry assay (EV Neuro) for semi-quantitative detection of CNS-derived EVs in body fluids. METHODS: EVs were separated from culture of glioblastoma cell lines (LN18, LN229, NCH82) and primary human astrocytes and measured at different input amounts in the MACSPlex EV Kit Neuro, human. In addition, EVs were separated from blood samples of small cohorts of glioblastoma (GB), multiple sclerosis (MS) and Alzheimer's disease patients as well as healthy controls (HC) and subjected to the EV Neuro assay. To determine statistically significant differences between relative marker signal intensities, an unpaired samples t-test or Wilcoxon rank sum test were computed. Data were subjected to tSNE, heatmap clustering, and correlation analysis to further explore the relationships between disease state and EV Neuro data. RESULTS: Glioblastoma cell lines and primary human astrocytes showed distinct EV profiles. Signal intensities were increasing with higher EV input. Data normalization improved identification of markers that deviate from a common profile. Overall, patient blood-derived EV marker profiles were constant, but individual EV populations were significantly increased in disease compared to healthy controls, e.g. CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis. tSNE and heatmap clustering analysis separated GB patients from HC, but not MS patients from HC. Correlation analysis revealed a potential association of CD107a+EVs with neurofilament levels in blood of MS patients and HC. CONCLUSIONS: The semi-quantitative EV Neuro assay demonstrated its utility for EV profiling in complex samples. However, reliable statistical results in biomarker studies require large sample cohorts and high effect sizes. Nonetheless, this exploratory trial confirmed the feasibility of discovering EV-associated biomarkers and monitoring circulating EV profiles in CNS diseases using the EV Neuro assay. Video Abstract.


Extracellular vesicles (EVs) are tiny particles released by cells, carrying unique biomolecules specific to their cell of origin. EVs from the central nervous system (CNS) can reach the blood, where they could serve as liquid-biopsy markers for diagnosing brain diseases like neurodegenerative disorders and tumors. This study evaluated a flow cytometry platform (here termed EV Neuro assay), which can detect multiple EV-associated markers simultaneously, to assess its potential for identifying CNS-derived EVs and disease-specific markers in complex samples including the blood. The study compared different sample materials and methods for isolating EVs. We found distinct EV profiles in EVs derived from glioblastoma and human astrocytes, with signal intensities increasing as more EVs were present. Analyzing serum or plasma from patients with brain diseases and healthy individuals, we observed that EV marker intensities were varying between individuals. Importantly, data normalization improved the identification of disease-specific markers, such as CD36+EVs in glioblastoma and GALC+EVs in multiple sclerosis, which were significantly higher in disease compared to healthy controls. Advanced clustering analysis techniques effectively distinguished glioblastoma patients from controls. Furthermore, a potential correlation between CD107a+EVs and neurofilament levels in multiple sclerosis patients was discovered. Overall, the semi-quantitative EV Neuro assay proved useful for profiling EVs in complex samples. However, for more reliable results in biomarker studies, larger sample cohorts and higher effect sizes are necessary. Nonetheless, this initial trial confirmed the potential of the EV Neuro assay for discovering disease-associated EV markers and monitoring circulating EV profiles in CNS diseases.


Subject(s)
Extracellular Vesicles , Glioblastoma , Multiple Sclerosis , Humans , Glioblastoma/metabolism , Flow Cytometry , Central Nervous System , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Multiple Sclerosis/metabolism
3.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502122

ABSTRACT

Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a valuable source of biomarkers. However, for EVs to be used as biomarkers in clinical practice, simple, comparable, and reproducible analytical methods must be applied. Although progress is being made in EV separation methods for human biofluids, the implementation of EV assays for clinical diagnosis and common guidelines are still lacking. We conducted a comprehensive analysis of established EV separation techniques from human serum and plasma, including ultracentrifugation and size exclusion chromatography (SEC), followed by concentration using (a) ultracentrifugation, (b) ultrafiltration, or (c) precipitation, and immunoaffinity isolation. We analyzed the size, number, protein, and miRNA content of the obtained EVs and assessed the functional delivery of EV cargo. Our results demonstrate that all methods led to an adequate yield of small EVs. While no significant difference in miRNA content was observed for the different separation methods, ultracentrifugation was best for subsequent flow cytometry analysis. Immunoaffinity isolation is not suitable for subsequent protein analyses. SEC + ultracentrifugation showed the best functional delivery of EV cargo. In summary, combining SEC with ultracentrifugation gives the highest yield of pure and functional EVs and allows reliable analysis of both protein and miRNA contents. We propose this combination as the preferred EV isolation method for biomarker studies from human serum or plasma.


Subject(s)
Cell Fractionation , Chemical Fractionation , Extracellular Vesicles/metabolism , Biological Transport , Biomarkers , Cell Fractionation/methods , Chemical Fractionation/methods , Extracellular Vesicles/ultrastructure , Flow Cytometry , Humans , Liquid Biopsy/methods , Proteins/metabolism
4.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003586

ABSTRACT

Glioblastoma is a devastating disease, for which biomarkers allowing a prediction of prognosis are urgently needed. microRNAs have been described as potentially valuable biomarkers in cancer. Here, we studied a panel of microRNAs in extracellular vesicles (EVs) from the serum of glioblastoma patients and evaluated their correlation with the prognosis of these patients. The levels of 15 microRNAs in EVs that were separated by size-exclusion chromatography were studied by quantitative real-time PCR, followed by CD44 immunoprecipitation (SEC + CD44), and compared with those from the total serum of glioblastoma patients (n = 55) and healthy volunteers (n = 10). Compared to total serum, we found evidence for the enrichment of miR-21-3p and miR-106a-5p and, conversely, lower levels of miR-15b-3p, in SEC + CD44 EVs. miR-15b-3p and miR-21-3p were upregulated in glioblastoma patients compared to healthy subjects. A significant correlation with survival of the patients was found for levels of miR-15b-3p in total serum and miR-15b-3p, miR-21-3p, miR-106a-5p, and miR-328-3p in SEC + CD44 EVs. Combining miR-15b-3p in serum or miR-106a-5p in SEC + CD44 EVs with any one of the other three microRNAs in SEC + CD44 EVs allowed for a prognostic stratification of glioblastoma patients. We have thus identified four microRNAs in glioblastoma patients whose levels, in combination, can predict the prognosis for these patients.


Subject(s)
Biomarkers, Tumor/blood , Glioblastoma/blood , Hyaluronan Receptors/blood , MicroRNAs/blood , Adult , Aged , Disease-Free Survival , Extracellular Vesicles/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , MicroRNAs/genetics , Middle Aged , Prognosis , Young Adult
5.
Blood ; 125(26): 4024-31, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-25887777

ABSTRACT

AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin-refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571.


Subject(s)
Antibodies, Bispecific/administration & dosage , Hodgkin Disease/drug therapy , Immunotherapy/methods , Adult , Aged , Antibodies, Bispecific/pharmacokinetics , Dose-Response Relationship, Drug , Female , Humans , Ki-1 Antigen/immunology , Male , Middle Aged , Receptors, IgG/immunology , Recurrence , Young Adult
6.
Blood ; 121(17): 3431-3, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23444403

ABSTRACT

Galectin-1 (Gal1) is a member of a highly conserved family of carbohydrate-binding proteins. It modulates innate and adaptive immune responses and fosters tumor-immune escape. Hodgkin lymphoma (HL) Reed-Sternberg cells overexpress and secrete Gal1, which selectively kills T helper (Th)1 and Th17 cells and cytotoxic T cells and promotes the immunosuppressive Th2/regulatory T-cell-predominant HL microenvironment. We developed a sandwich enzyme-linked immunosorbent assay and assessed serum Gal1 levels in 293 newly diagnosed, previously untreated patients with classical HL (cHL) enrolled in 3 risk-adapted clinical trials. Serum Gal1 levels were significantly higher in patients with cHL than in normal controls (P < .0001). Gal1 serum levels also increased with Ann Arbor stage (P = .012), areas of nodal involvement (P < .0001), and the International Prognostic Score (2-7, P = .019). We conclude that Gal1 serum levels are significantly associated with tumor burden and related clinical features in newly diagnosed cHL patients.


Subject(s)
Biomarkers, Tumor/blood , Galectin 1/blood , Hodgkin Disease/blood , Hodgkin Disease/pathology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Neoplasm Staging , Retrospective Studies , Tumor Burden
7.
Blood ; 121(18): 3658-65, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23509156

ABSTRACT

Natural killer (NK) cells are a major component of the anti-tumor immune response. NK cell dysfunctions have been reported in various hematologic malignancies, including chronic lymphocytic leukemia (CLL). Here we investigated the role of tumor cell-released soluble and exosomal ligands for NK cell receptors that modulate NK cell activity. Soluble CLL plasma factors suppressed NK cell cytotoxicity and down-regulated the surface receptors CD16 and CD56 on NK cells of healthy donors. The inhibition of NK cell cytotoxicity was attributed to the soluble ligand BAG6/BAT3 that engages the activating receptor NKp30 expressed on NK cells. Soluble BAG6 was detectable in the plasma of CLL patients, with the highest levels at the advanced disease stages. In contrast, NK cells were activated when BAG6 was presented on the surface of exosomes. The latter form was induced in non-CLL cells by cellular stress via an nSmase2-dependent pathway. Such cells were eliminated by lymphocytes in a xenograft tumor model in vivo. Here, exosomal BAG6 was essential for tumor cell killing because BAG6-deficient cells evaded immune detection. Taken together, the findings show that the dysregulated balance of exosomal vs soluble BAG6 expression may cause immune evasion of CLL cells.


Subject(s)
Killer Cells, Natural/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Molecular Chaperones/pharmacology , Receptors, Natural Killer Cell/metabolism , Tumor Escape/drug effects , Animals , CD56 Antigen/metabolism , CD56 Antigen/physiology , Cells, Cultured , Exosomes/metabolism , Gene Knockdown Techniques , HEK293 Cells , Humans , Killer Cells, Natural/metabolism , Killer Cells, Natural/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Ligands , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Mice, SCID , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Receptors, IgG/metabolism , Receptors, IgG/physiology , Receptors, Natural Killer Cell/agonists , Receptors, Natural Killer Cell/antagonists & inhibitors , Solubility , Tumor Escape/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
8.
Blood ; 121(5): 812-21, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23118218

ABSTRACT

UNLABELLED: Survival of chronic lymphocytic leukemia (CLL) cells depends on stimuli provided by a suitable microenvironment. The factors and mechanisms providing this growth support for CLL cells are not fully understood. We found that plasma levels of macrophage migration inhibitory factor (MIF), a proinflammatory and immunoregulatory chemokine, were elevated in CLL patients. Therefore, we characterized the functional role of MIF in a CLL mouse model. For this purpose, we crossed Eµ-TCL1 mice with MIF knockout (MIF-/-) mice. The resulting TCL1+/wtMIF/ mice showed a delayed onset of leukemia, reduced splenomegaly and hepatomegaly, and a longer survival than TCL1+/wtMIFwt/wt controls. Immunohistochemical examination of the lymphoid organs showed that the numbers of macrophages were significantly reduced in the spleen and bone marrow of TCL1+/wtMIF/ mice compared with TCL1+/wtMIFwt/wt controls. Mechanistic studies in vitro revealed that the absence of MIF rendered CLL cells more susceptible to apoptosis. Accordingly, incubation with an anti-MIF antibody reduced the survival of CLL cells on a macrophage feeder layer. In addition, the migratory activity of TCL1+/wtMIF/ macrophages was decreased compared with TCL1+/wtMIFwt/wt macrophages. Taken together, our results provide evidence that MIF supports the development of CLL by enhancing the interaction of CLL cells with macrophages. KEY POINTS: Targeted deletion of the gene for macrophage migration inhibitory factor (MIF) delays development of chronic lymphocytic leukemia and prolongs survival in mice. MIF recruits leukemia-associated macrophages to spleen or liver.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Intramolecular Oxidoreductases/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Macrophage Migration-Inhibitory Factors/immunology , Macrophages/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Survival , Feeder Cells , Humans , Intramolecular Oxidoreductases/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Macrophage Migration-Inhibitory Factors/genetics , Macrophages/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Tumor Cells, Cultured
9.
J Pathol ; 232(4): 405-14, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24659185

ABSTRACT

Classical Hodgkin's lymphoma (cHL)-affected lymphoid tissue contains only a few malignant Hodgkin and Reed-Sternberg (HRS) cells, which are disseminated within a massive infiltrate of reactive cells. In particular, the innate immune infiltrate is deemed to support tumour growth by direct cell-cell interaction. Since they are rarely found in close proximity to the malignant cells in situ, we investigated whether cHL-derived extracellular vesicles might substitute for a direct cell-cell contact. We studied the crosstalk of the transmembrane proteins CD30 and CD30 ligand (CD30L) because they are selectively expressed on HRS and innate immune cells, respectively. Here, we showed that HRS cells released both the ectodomain as a soluble molecule (sCD30) and the entire receptor on the surface of extracellular vesicles. The vesicle diameter was 40-800 nm, as determined by cryo- and immune electron microscopy. In addition to CD30, typical extracellular vesicle markers were detected by mass spectrometry and flow cytometry, including tetraspanins, flotillins, heat shock proteins and adhesion molecules. In contrast to sCD30, vesicles caused a CD30-dependent release of interleukin-8 in CD30L(+) eosinophil-like EoL-1 cells and primary granulocytes from healthy donors, underscoring the functionality of CD30 on vesicles. In extracellular matrix (ECM)-embedded culture of HRS cells, a network of actin and tubulin-based protrusions guided CD30(+) vesicles into the micro-environment. This network targeted CD30(+) vesicles towards distant immune cells and caused a robust polarization of CD30L. Confocal laser scanning microscopy of 30 µm sections showed a CD30 vesicle-containing network also in cHL-affected lymphoid tissue of both mixed-cellularity and nodular sclerosing subtypes. This network might facilitate the communication between distant cell types in cHL tissue and allow a functional CD30-CD30L interaction in trans. The tubulin backbone of the network may provide a target for the therapy of cHL with antitubulin-based CD30 antibody constructs.


Subject(s)
Cell Communication , Cell Surface Extensions/metabolism , Hodgkin Disease/metabolism , Ki-1 Antigen/metabolism , Reed-Sternberg Cells/metabolism , Secretory Vesicles/metabolism , Signal Transduction , Tumor Microenvironment , Biomarkers, Tumor/metabolism , CD30 Ligand/metabolism , Cell Line, Tumor , Cell Surface Extensions/immunology , Cell Surface Extensions/ultrastructure , Cryoelectron Microscopy , Eosinophils/immunology , Eosinophils/metabolism , Flow Cytometry , Granulocytes/immunology , Granulocytes/metabolism , Hodgkin Disease/immunology , Hodgkin Disease/pathology , Humans , Interleukin-8/metabolism , Mass Spectrometry , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Immunoelectron , Organelle Size , Reed-Sternberg Cells/immunology , Reed-Sternberg Cells/ultrastructure , Secretory Vesicles/immunology , Secretory Vesicles/ultrastructure
10.
Int J Cancer ; 134(12): 2829-40, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24242212

ABSTRACT

NKG2D, an activating receptor expressed on NK cells and T cells, is critically involved in tumor immunosurveillance. In this study, we explored the potential therapeutic utility of the NKG2D ligand ULBP2 for the treatment of colon carcinoma. To this end we designed a fusion protein consisting of human ULBP2 and an antibody-derived single chain targeting the tumor carcinoembryonic antigen (CEA). The bispecific recombinant fusion protein re-directed NK cells towards malignant cells by binding to both, tumor cells and NK cells, and triggered NK cell-mediated target cell killing in vitro. Moreover, tumor growth was significantly delayed in a syngeneic colon carcinoma mouse model in response to immunoligand treatment. The anti-tumor activity could be attributed to the stimulation of immune cells with an elevated expression of the activation marker CD69 on NK, T and NKT cells and the infiltration of CD45+ immune cells into the solid tumor. In summary, it was demonstrated that immunoligands provide specific tumor targeting by NK cells and exert anti-tumor activity in vitro and in vivo. This technology represents a novel immunotherapeutic strategy for solid tumors with the potential to be further developed for clinical applications.


Subject(s)
Carcinoembryonic Antigen/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Intercellular Signaling Peptides and Proteins/therapeutic use , NK Cell Lectin-Like Receptor Subfamily K/immunology , Natural Killer T-Cells/immunology , Adoptive Transfer , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Carcinoembryonic Antigen/genetics , Cell Line, Tumor , Disease Models, Animal , GPI-Linked Proteins/therapeutic use , HEK293 Cells , Humans , Immunotherapy, Adoptive , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Lectins, C-Type/metabolism , Leukocyte Common Antigens/metabolism , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/therapeutic use , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
11.
Mol Ther ; 21(4): 895-903, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23459515

ABSTRACT

Natural killer (NK) cells represent a key component of the innate immune system against cancer. Nevertheless, malignant diseases arise in immunocompetent individuals despite tumor immunosurveillance. Hodgkin lymphoma (HL) is characterized by CD30(+) tumor cells and a massive infiltration of immune effector cells in affected lymph nodes. The latter obviously fail to eliminate the malignant cell population. Here, we tested for functional NK cell defects in HL and suggest an improvement of NK function by therapeutic means. We demonstrate that peripheral NK cells (pNK) from patients with HL fail to eliminate HL cell lines in ex vivo killing assays. Impaired NK cell function correlated with elevated serum levels of soluble ligands for NK cell receptors NKp30 (BAG6/BAT3) and NKG2D (MICA), factors known to constrict NK cell function. In vitro, NK cell cytotoxicity could be restored by an NKG2D/NKp30-independent bispecific antibody construct (CD30xCD16A). It artificially links the tumor receptor CD30 with the cytotoxicity NK cell receptor CD16A. Moreover, we observed that NK cells from patients treated with this construct were generally activated and displayed a restored cytotoxicity against HL target cells. These data suggest that reversible suppression of NK cell activity contributes to immune evasion in HL and can be antagonized therapeutically.


Subject(s)
Antibodies, Bispecific/therapeutic use , Hodgkin Disease/therapy , Killer Cells, Natural/immunology , Antibodies, Bispecific/pharmacology , Cell Line, Tumor , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Immunohistochemistry
12.
Biol Chem ; 394(10): 1325-31, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23787466

ABSTRACT

Evasion of apoptosis is a hallmark of cancer cells. Inhibitor of apoptosis proteins (IAPs) act as endogenous inhibitors of programmed cell death and are overexpressed in several tumors including Hodgkin lymphoma (HL). Preclinical studies indicate antitumor activity of IAP antagonists and clinical studies in hematological malignancies are underway. Here, we investigate the impact of the small molecule IAP antagonist LCL161 on HL cell lines. Although the antagonist caused rapid degradation of cIAP1 leading to TNFα secretion, LCL161 did not promote apoptosis significantly. However, LCL161 induced expression of MICA and MICB, ligands for the activating immune receptor NKG2D, and enhanced the susceptibility of HL cells to NKG2D-dependent lysis by NK cells. MICA/B upregulation was dependent on activation of the DNA damage response upon LCL161 treatment. Taken together, we demonstrate a novel link between IAP inhibition, DNA damage and immune recognition.


Subject(s)
DNA Damage/immunology , Hodgkin Disease/physiopathology , Immunity, Innate/immunology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily K/agonists , Thiazoles/pharmacology , Up-Regulation , Blotting, Western , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression Regulation, Neoplastic , Hodgkin Disease/immunology , Humans , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Hepatology ; 56(4): 1391-400, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22473838

ABSTRACT

UNLABELLED: Pruritus is a seriously disabling symptom accompanying many cholestatic liver disorders. Recent experimental evidence implicated the lysophospholipase, autotaxin (ATX), and its product, lysophosphatidic acid (LPA), as potential mediators of cholestatic pruritus. In this study, we highlight that increased serum ATX levels are specific for pruritus of cholestasis, but not pruritus of uremia, Hodgkin's disease, or atopic dermatitis. Treatment of patients with cholestasis with the bile salt sequestrant, colesevelam, but not placebo, effectively reduced total serum bile salts and fibroblast growth factor 19 levels, but only marginally altered pruritus intensity and ATX activity. Rifampicin (RMP) significantly reduced itch intensity and ATX activity in patients with pruritus not responding to bile salt sequestrants. In vitro, RMP inhibited ATX expression in human HepG2 hepatoma cells and hepatoma cells overexpressing the pregnane X receptor (PXR), but not in hepatoma cells in which PXR was knocked down. Treatment of severe, refractory pruritus by the molecular adsorbents recirculation system or nasobiliary drainage improved itch intensity, which, again, correlated with the reduction of ATX levels. Upon reoccurrence of pruritus, ATX activity returned to pretreatment values. CONCLUSION: Serum ATX activity is specifically increased in patients with cholestatic, but not other forms of, systemic pruritus and closely correlates with the effectiveness of therapeutic interventions. The beneficial antipruritic action of RMP may be explained, at least partly, by the PXR-dependent transcriptional inhibition of ATX expression. Thus, ATX likely represents a novel therapeutic target for pruritus of cholestasis.


Subject(s)
Cholestasis/blood , Fibroblast Growth Factors/blood , Phosphoric Diester Hydrolases/blood , Pruritus/blood , Pruritus/drug therapy , Allylamine/analogs & derivatives , Allylamine/therapeutic use , Analysis of Variance , Antipruritics/therapeutic use , Biomarkers/blood , Blotting, Western , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/complications , Case-Control Studies , Cholestasis/complications , Cohort Studies , Colesevelam Hydrochloride , Electrophoresis, Polyacrylamide Gel , Female , Hep G2 Cells/metabolism , Humans , Liver Neoplasms/blood , Liver Neoplasms/complications , Lysophospholipase/blood , Male , Multivariate Analysis , Phosphoric Diester Hydrolases/metabolism , Polymerase Chain Reaction , Pruritus/etiology , ROC Curve , Rifampin/therapeutic use , Treatment Outcome
14.
Am J Hematol ; 88(2): 113-5, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23225085

ABSTRACT

Hodgkin lymphoma (HL) has become one of the best curable cancers. However, better biomarkers are needed for outcome prediction that would allow protecting patients from over- or under-dosing of treatment. Thymus and activation-regulated chemokine/CCL17 (TARC) is highly and specifically elevated in this disease and has been proposed as possible biomarker in HL patients. In this study, we show that pretreatment TARC levels were associated with established clinical risk factors and predictive for response to treatment in a large cohort of HL patients treated in clinical trials by the German Hodgkin Study Group. Moreover, TARC levels also significantly contributed to a novel multivariate model predicting treatment response. These data clearly suggest an important role for this chemokine as biomarker in HL.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemokine CCL17/blood , Hodgkin Disease/blood , Hodgkin Disease/drug therapy , Adult , Biomarkers/blood , Cohort Studies , Female , Germany , Hodgkin Disease/diagnosis , Humans , Male , Middle Aged , Multivariate Analysis , Neoplasm Staging , Prognosis , Remission Induction , Retrospective Studies , Risk Factors , Young Adult
15.
Biol Chem ; 393(1-2): 101-6, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22628304

ABSTRACT

The interplay between dendritic cells (DCs) and natural killer (NK) cells directs adaptive immune responses. The molecular basis of the cross-talk is largely undefined. Here, we provide evidence for a contribution of CD30 (TNFRSF8) and its ligand CD30L (TNFSF8) expressed on NK cells and DCs, respectively. We demonstrate that CD30-mediated engagement of CD30L induced cytokine secretion from immature DCs via the mitogen-activated protein kinase pathway. Moreover, CD30L engagement promoted differentiation to mature DCs. On the contrary, the engagement of CD30 on NK cells resulted in an NF-κB-dependent release of TNF-α/IFN-γ. These data uncover a novel and unexpected role for CD30/CD30L that contributes to proinflammatory immune responses.


Subject(s)
CD30 Ligand/metabolism , Dendritic Cells/metabolism , Ki-1 Antigen/metabolism , Killer Cells, Natural/metabolism , Signal Transduction , CD30 Ligand/biosynthesis , Dendritic Cells/cytology , Humans , Ki-1 Antigen/biosynthesis , Killer Cells, Natural/cytology
17.
Cardiovasc Res ; 118(1): 316-333, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33135066

ABSTRACT

AIMS: Chronic kidney disease (CKD) is an independent risk factor for the development of coronary artery disease (CAD). For both, CKD and CAD, the intercellular transfer of microRNAs (miRs) through extracellular vesicles (EVs) is an important factor of disease development. Whether the combination of CAD and CKD affects endothelial function through cellular crosstalk of EV-incorporated miRs is still unknown. METHODS AND RESULTS: Out of 172 screened CAD patients, 31 patients with CAD + CKD were identified and matched with 31 CAD patients without CKD. Additionally, 13 controls without CAD and CKD were included. Large EVs from CAD + CKD patients contained significantly lower levels of the vasculo-protective miR-130a-3p and miR-126-3p compared to CAD patients and controls. Flow cytometric analysis of plasma-derived EVs revealed significantly higher numbers of endothelial cell-derived EVs in CAD and CAD + CKD patients compared to controls. EVs from CAD + CKD patients impaired target human coronary artery endothelial cell (HCAEC) proliferation upon incubation in vitro. Consistent with the clinical data, treatment with the uraemia toxin indoxyl sulfate (IS)-reduced miR-130a-3p levels in HCAEC-derived EVs. EVs from IS-treated donor HCAECs-reduced proliferation and re-endothelialization in EV-recipient cells and induced an anti-angiogenic gene expression profile. In a mouse-experiment, intravenous treatment with EVs from IS-treated endothelial cells significantly impaired endothelial regeneration. On the molecular level, we found that IS leads to an up-regulation of the heterogenous nuclear ribonucleoprotein U (hnRNPU), which retains miR-130a-3p in the cell leading to reduced vesicular miR-130a-3p export and impaired EV-recipient cell proliferation. CONCLUSION: Our findings suggest that EV-miR-mediated vascular intercellular communication is altered in patients with CAD and CKD, promoting CKD-induced endothelial dysfunction.


Subject(s)
Carotid Arteries/metabolism , Carotid Artery Injuries/metabolism , Cell Communication , Cell Proliferation , Coronary Artery Disease/metabolism , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Renal Insufficiency, Chronic/metabolism , Adult , Aged , Aged, 80 and over , Animals , Carotid Arteries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Coronary Vessels/drug effects , Coronary Vessels/pathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Female , Humans , Indican/toxicity , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Middle Aged , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
18.
Cancer Res ; 67(1): 332-8, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17210715

ABSTRACT

CD30 is a transmembrane protein selectively overexpressed on many human lymphoma cells and therefore an interesting target for antibody-based immunotherapy. However, binding of therapeutic antibodies stimulates a juxtamembrane cleavage of CD30 leading to a loss of target antigen and an enhanced release of the soluble ectodomain of CD30 (sCD30). Here, we show that sCD30 binds to CD30 ligand (CD153)-expressing non-target cells. Because antibodies bind to sCD30, this results in unwanted antibody binding to these cells via sCD30 bridging. To overcome shedding-dependent damage of normal cells in CD30-specific immunotherapy, we analyzed the mechanism involved in the release. Shedding of CD30 can be enhanced by protein kinase C (PKC) activation, implicating the disintegrin metalloproteinase ADAM17 but not free cytoplasmic calcium. However, antibody-induced CD30 shedding is calcium dependent and PKC independent. This shedding involved the related metalloproteinase ADAM10 as shown by the use of the preferential ADAM10 inhibitor GI254023X and by an ADAM10-deficient cell line generated from embryonically lethal ADAM10(-/-) mouse. In coculture experiments, the antibody-induced transfer of sCD30 from the human Hodgkin's lymphoma cell line L540 to the CD30-negative but CD153-expressing human mast cell line HMC-1 was inhibited by GI254023X. These findings suggest that selective metalloproteinase inhibitors blocking antibody-induced shedding of target antigens could be of therapeutic value to increase the specificity and reduce side effects of immunotherapy with monoclonal antibodies.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Immunotherapy/methods , Ki-1 Antigen/immunology , Lymphoma/immunology , Lymphoma/therapy , Membrane Proteins/antagonists & inhibitors , ADAM Proteins/immunology , ADAM Proteins/metabolism , ADAM10 Protein , Amyloid Precursor Protein Secretases/immunology , Amyloid Precursor Protein Secretases/metabolism , Antibodies/immunology , Antibodies/pharmacology , CD30 Ligand/immunology , CD30 Ligand/metabolism , Calcimycin/pharmacology , Calcium/metabolism , Cell Line, Tumor , Humans , Ki-1 Antigen/metabolism , Lymphoma/enzymology , Membrane Proteins/immunology , Membrane Proteins/metabolism , Protein Kinase C/metabolism
19.
J Extracell Vesicles ; 8(1): 1596016, 2019.
Article in English | MEDLINE | ID: mdl-30988894

ABSTRACT

The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods to characterize single EVs. Nanoparticle Tracking Analysis (NTA) is commonly used to determine EV concentration and diameter. As the EV field is lacking methods to easily confirm and validate NTA data, questioning the reliability of measurements remains highly important. In this regard, a comparison addressing measurement quality between different NTA devices such as Malvern's NanoSight NS300 or Particle Metrix' ZetaView has not yet been conducted. To evaluate the accuracy and repeatability of size and concentration determinations of both devices, we employed comparative methods including transmission electron microscopy (TEM) and single particle interferometric reflectance imaging sensing (SP-IRIS) by ExoView. Multiple test measurements with nanospheres, liposomes and ultracentrifuged EVs from human serum and cell culture supernatant were performed. Additionally, serial dilutions and freeze-thaw cycle-dependent EV decrease were measured to determine the robustness of each system. Strikingly, NanoSight NS300 exhibited a 2.0-2.1-fold overestimation of polystyrene and silica nanosphere concentration. By measuring serial dilutions of EV samples, we demonstrated higher accuracy in concentration determination by ZetaView (% BIAS range: 2.7-8.5) in comparison with NanoSight NS300 (% BIAS range: 32.9-36.8). The concentration measurements by ZetaView were also more precise (% CV range: 0.0-4.7) than measurements by NanoSight NS300 (% CV range: 5.4-10.7). On the contrary, quantitative TEM imaging indicated more accurate EV sizing by NanoSight NS300 (% DTEM range: 79.5-134.3) compared to ZetaView (% DTEM range: 111.8-205.7), while being equally repeatable (NanoSight NS300% CV range: 0.8-6.7; ZetaView: 1.4-7.8). However, both devices failed to report a peak EV diameter below 60 nm compared to TEM and SP-IRIS. Taken together, NTA devices differ strongly in their hardware and software affecting measuring results. ZetaView provided a more accurate and repeatable depiction of EV concentration, whereas NanoSight NS300 supplied size measurements of higher resolution.

20.
Theranostics ; 9(21): 6047-6062, 2019.
Article in English | MEDLINE | ID: mdl-31534536

ABSTRACT

Extracellular vesicles released by tumor cells contribute to the reprogramming of the tumor microenvironment and interfere with hallmarks of cancer including metastasis. Notably, melanoma cell-derived EVs are able to establish a pre-metastatic niche in distant organs, or on the contrary, exert anti-tumor activity. However, molecular insights into how vesicles are selectively packaged with cargo defining their specific functions remain elusive. Methods: Here, we investigated the role of the chaperone Bcl2-associated anthogene 6 (BAG6, synonym Bat3) for the formation of pro- and anti-tumor EVs. EVs collected from wildtype cells and BAG6-deficient cells were characterized by mass spectrometry and RNAseq. Their tumorigenic potential was analyzed using the B-16V transplantation mouse melanoma model. Results: We demonstrate that EVs from B-16V cells inhibit lung metastasis associated with the mobilization of Ly6Clow patrolling monocytes. The formation of these anti-tumor-EVs was dependent on acetylation of p53 by the BAG6/CBP/p300-acetylase complex, followed by recruitment of components of the endosomal sorting complexes required for transport (ESCRT) via a P(S/T)AP double motif of BAG6. Genetic ablation of BAG6 and disruption of this pathway led to the release of a distinct EV subtype, which failed to suppress metastasis but recruited tumor-promoting neutrophils to the pre-metastatic niche. Conclusion: We conclude that the BAG6/CBP/p300-p53 axis is a key pathway directing EV cargo loading and thus a potential novel microenvironmental therapeutic target.


Subject(s)
Exosomes/immunology , Melanoma/immunology , Molecular Chaperones/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylation , Animals , Cell Transformation, Neoplastic , E1A-Associated p300 Protein/metabolism , Extracellular Vesicles/metabolism , HEK293 Cells , Humans , Melanoma/pathology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Monocytes/immunology , Peptide Fragments/metabolism , Phosphoproteins/metabolism , Sialoglycoproteins/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL