Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Annu Rev Immunol ; 39: 131-166, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33481643

ABSTRACT

Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.


Subject(s)
Dendritic Cells , Immunity, Innate , Animals , Cell Lineage , Humans , Mice
2.
Nat Immunol ; 25(3): 448-461, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351322

ABSTRACT

Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.


Subject(s)
Dendritic Cells , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Mice , Cell Differentiation
3.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34081922

ABSTRACT

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Subject(s)
Cross-Priming/immunology , Gelsolin/metabolism , Immunity , Lectins, C-Type/metabolism , Neoplasms/immunology , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cross-Priming/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Gelsolin/chemistry , Gelsolin/deficiency , Gene Expression Regulation, Neoplastic/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity/drug effects , Mice, Inbred C57BL , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Binding/drug effects , Survival Analysis
4.
Annu Rev Immunol ; 30: 491-529, 2012.
Article in English | MEDLINE | ID: mdl-22224766

ABSTRACT

Myeloid cells are key drivers of physiological responses to pathogen invasion or tissue damage. Members of the C-type lectin receptor (CLR) family stand out among the specialized receptors utilized by myeloid cells to orchestrate these responses. CLR ligands include carbohydrate, protein, and lipid components of both pathogens and self, which variably trigger endocytic, phagocytic, proinflammatory, or anti-inflammatory reactions. These varied outcomes rely on a versatile system for CLR signaling that includes tyrosine-based motifs that recruit kinases, phosphatases, or endocytic adaptors as well as nontyrosine-based signals that modulate the activation of other pathways or couple to the uptake machinery. Here, we review the signaling properties of myeloid CLRs and how they impact the role of myeloid cells in innate and adaptive immunity.


Subject(s)
Immunity , Lectins, C-Type/metabolism , Signal Transduction , Animals , Homeostasis/immunology , Humans , Ligands , Myeloid Cells/metabolism , Protein Binding
5.
Nat Immunol ; 22(2): 140-153, 2021 02.
Article in English | MEDLINE | ID: mdl-33349708

ABSTRACT

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Subject(s)
Antigen Presentation , Cross-Priming , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Phagosomes/metabolism , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , T-Lymphocytes/metabolism , Animals , Cell Death , Coculture Techniques , Dendritic Cells/immunology , HEK293 Cells , Histocompatibility Antigens Class I/metabolism , Humans , Lectins, C-Type/genetics , Ligands , Mice , NADPH Oxidases/metabolism , Phagosomes/genetics , Phagosomes/immunology , Phosphorylation , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Receptors, Immunologic/genetics , Receptors, Mitogen/genetics , Signal Transduction , Syk Kinase/metabolism , T-Lymphocytes/immunology
6.
Immunity ; 57(4): 700-717, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599166

ABSTRACT

C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.


Subject(s)
Lectins, C-Type , Neoplasms , Humans , Lectins, C-Type/metabolism , Immunity, Innate , Myeloid Cells/metabolism , Signal Transduction , Neoplasms/metabolism , Receptors, Pattern Recognition/metabolism
7.
Cell ; 172(5): 1022-1037.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29429633

ABSTRACT

Conventional type 1 dendritic cells (cDC1) are critical for antitumor immunity, and their abundance within tumors is associated with immune-mediated rejection and the success of immunotherapy. Here, we show that cDC1 accumulation in mouse tumors often depends on natural killer (NK) cells that produce the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts closely correlate with gene signatures of both NK cells and cDC1 and are associated with increased overall patient survival. Notably, tumor production of prostaglandin E2 (PGE2) leads to evasion of the NK cell-cDC1 axis in part by impairing NK cell viability and chemokine production, as well as by causing downregulation of chemokine receptor expression in cDC1. Our findings reveal a cellular and molecular checkpoint for intratumoral cDC1 recruitment that is targeted by tumor-derived PGE2 for immune evasion and that could be exploited for cancer therapy.


Subject(s)
Dendritic Cells/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Chemokine CCL5/metabolism , Chemokines, C/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Mutation/genetics , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Survival Analysis
8.
Immunity ; 55(1): 129-144.e8, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34910930

ABSTRACT

Dendritic cells (DCs) patrol tissues and transport antigens to lymph nodes to initiate adaptive immune responses. Within tissues, DCs constitute a complex cell population composed of distinct subsets that can exhibit different activation states and functions. How tissue-specific cues orchestrate DC diversification remains elusive. Here, we show that the small intestine included two pools of cDC2s originating from common pre-DC precursors: (1) lamina propria (LP) CD103+CD11b+ cDC2s that were mature-like proinflammatory cells and (2) intraepithelial cDC2s that exhibited an immature-like phenotype as well as tolerogenic properties. These phenotypes resulted from the action of food-derived retinoic acid (ATRA), which enhanced actomyosin contractility and promoted LP cDC2 transmigration into the epithelium. There, cDC2s were imprinted by environmental cues, including ATRA itself and the mucus component Muc2. Hence, by reaching distinct subtissular niches, DCs can exist as immature and mature cells within the same tissue, revealing an additional mechanism of DC functional diversification.


Subject(s)
Dendritic Cells/immunology , Inflammation/immunology , Intestinal Mucosa/pathology , T-Lymphocytes/immunology , Actomyosin/metabolism , Animals , Antigen Presentation , Antigens, CD/metabolism , CD11b Antigen/metabolism , Cell Differentiation , Cell Movement , Cells, Cultured , Immune Tolerance , Integrin alpha Chains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucin-2/immunology , Tretinoin/metabolism
9.
Immunity ; 54(12): 2676-2680, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34739870

ABSTRACT

The 2005 Immunity paper by Karikó et al. has been hailed as a cornerstone insight that directly led to the design and delivery of the mRNA vaccines against COVID-19. We asked experts in pathogen sensing, vaccine development, and public health to provide their perspective on the study and its implications.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Vaccine Development/history , mRNA Vaccines/immunology , Animals , History, 21st Century , Humans , RNA, Messenger/immunology , World Health Organization
10.
Cell ; 162(6): 1257-70, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26343581

ABSTRACT

The mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant Braf(V600E) mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in Braf(V600E) mouse melanoma cells, as well as in Nras(G12D) melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients.


Subject(s)
Neoplasms/immunology , Prostaglandin-Endoperoxide Synthases/metabolism , Tumor Escape , Adaptive Immunity , Animals , Antibodies, Monoclonal/administration & dosage , Antigens, CD/immunology , Aspirin/administration & dosage , Cell Line, Tumor , Dendritic Cells/immunology , Humans , Immunity, Innate , Immunotherapy , Inflammation/drug therapy , Inflammation/immunology , Integrin alpha Chains/immunology , Interferons/metabolism , Melanoma/drug therapy , Melanoma/immunology , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Prostaglandins/immunology , Proto-Oncogene Proteins B-raf/metabolism
11.
Immunity ; 53(6): 1215-1229.e8, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33220234

ABSTRACT

Inflammation can support or restrain cancer progression and the response to therapy. Here, we searched for primary regulators of cancer-inhibitory inflammation through deep profiling of inflammatory tumor microenvironments (TMEs) linked to immune-dependent control in mice. We found that early intratumoral accumulation of interferon gamma (IFN-γ)-producing natural killer (NK) cells induced a profound remodeling of the TME and unleashed cytotoxic T cell (CTL)-mediated tumor eradication. Mechanistically, tumor-derived prostaglandin E2 (PGE2) acted selectively on EP2 and EP4 receptors on NK cells, hampered the TME switch, and enabled immune evasion. Analysis of patient datasets across human cancers revealed distinct inflammatory TME phenotypes resembling those associated with cancer immune control versus escape in mice. This allowed us to generate a gene-expression signature that integrated opposing inflammatory factors and predicted patient survival and response to immune checkpoint blockade. Our findings identify features of the tumor inflammatory milieu associated with immune control of cancer and establish a strategy to predict immunotherapy outcomes.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Inflammation/immunology , Neoplasms/immunology , Tumor Escape/immunology , Animals , Dinoprostone/metabolism , Humans , Immunotherapy , Inflammation/genetics , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Mice , Neoplasms/therapy , Phenotype , Prognosis , Prostaglandin-Endoperoxide Synthases/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
13.
Cell ; 154(4): 843-58, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953115

ABSTRACT

Mononuclear phagocytes are classified as macrophages or dendritic cells (DCs) based on cell morphology, phenotype, or select functional properties. However, these attributes are not absolute and often overlap, leading to difficulties in cell-type identification. To circumvent this issue, we describe a mouse model to define DCs based on their ontogenetic descendence from a committed precursor. We show that precursors of mouse conventional DCs, but not other leukocytes, are marked by expression of DNGR-1. Genetic tracing of DNGR-1 expression history specifically marks cells traditionally ascribed to the DC lineage, and this restriction is maintained after inflammation. Notably, in some tissues, cells previously thought to be monocytes/macrophages are in fact descendants from DC precursors. These studies provide an in vivo model for fate mapping of DCs, distinguishing them from other leukocyte lineages, and thus help to unravel the functional complexity of the mononuclear phagocyte system.


Subject(s)
Cell Lineage , Dendritic Cells/cytology , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Animals , Dendritic Cells/metabolism , Hematopoiesis , Inflammation/pathology , Kidney/cytology , Lectins, C-Type/genetics , Lymphoid Progenitor Cells/metabolism , Macrophages/cytology , Mice , Mice, Inbred C57BL , Phagocytes/cytology , Receptors, IgG/metabolism , Receptors, Immunologic/genetics
14.
Semin Immunol ; 66: 101726, 2023 03.
Article in English | MEDLINE | ID: mdl-36758378

ABSTRACT

Conventional dendritic cells type 1 (cDC1) are critical for inducing protective CD8+ T cell responses to tumour and viral antigens. In many instances, cDC1 access those antigens in the form of material internalised from dying tumour or virally-infected cells. How cDC1 extract dead cell-associated antigens and cross-present them in the form of peptides bound to MHC class I molecules to CD8+ T cells remains unclear. Here we review the biology of dendritic cell natural killer group receptor-1 (DNGR-1; also known as CLEC9A), a C-type lectin receptor highly expressed on cDC1 that plays a key role in this process. We highlight recent advances that support a function for DNGR-1 signalling in promoting inducible rupture of phagocytic or endocytic compartments containing dead cell debris, thereby making dead cell-associated antigens accessible to the endogenous MHC class I processing and presentation machinery of cDC1. We further review how DNGR-1 detects dead cells, as well as the functions of the receptor in anti-viral and anti-tumour immunity. Finally, we highlight how the study of DNGR-1 has opened new perspectives into cross-presentation, some of which may have applications in immunotherapy of cancer and vaccination against viral diseases.


Subject(s)
Cross-Priming , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Receptors, Immunologic , Antigens/metabolism , Dendritic Cells , Neoplasms/metabolism
15.
EMBO J ; 41(6): e109760, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35156720

ABSTRACT

RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs form base-paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG-I-like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi-Goutières Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG-I-like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1-deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , RNA Helicases/metabolism , Autoimmune Diseases of the Nervous System/genetics , Humans , Nervous System Malformations/genetics , RNA Editing , RNA, Double-Stranded
16.
Cell ; 140(3): 397-408, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20144762

ABSTRACT

RIG-I is a key mediator of antiviral immunity, able to couple detection of infection by RNA viruses to the induction of interferons. Natural RIG-I stimulatory RNAs have variously been proposed to correspond to virus genomes, virus replication intermediates, viral transcripts, or self-RNA cleaved by RNase L. However, the relative contribution of each of these RNA species to RIG-I activation and interferon induction in virus-infected cells is not known. Here, we use three approaches to identify physiological RIG-I agonists in cells infected with influenza A virus or Sendai virus. We show that RIG-I agonists are exclusively generated by the process of virus replication and correspond to full-length virus genomes. Therefore, nongenomic viral transcripts, short replication intermediates, and cleaved self-RNA do not contribute substantially to interferon induction in cells infected with these negative strand RNA viruses. Rather, single-stranded RNA viral genomes bearing 5'-triphosphates constitute the natural RIG-I agonists that trigger cell-intrinsic innate immune responses during infection.


Subject(s)
DEAD-box RNA Helicases/immunology , Membrane Proteins/immunology , Nerve Tissue Proteins/immunology , RNA Virus Infections/immunology , RNA, Viral/immunology , Animals , Cell Line , DEAD Box Protein 58 , Dogs , Humans , Interferons/immunology , Mice , RNA Viruses/physiology , Receptors, Cell Surface , Receptors, Immunologic , Virus Replication
17.
Immunity ; 42(6): 1197-211, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26084029

ABSTRACT

Dendritic cells (DCs) are key players in the immune system. Much of their biology has been elucidated via culture systems in which hematopoietic precursors differentiate into DCs under the aegis of cytokines. A widely used protocol involves the culture of murine bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate BM-derived DCs (BMDCs). BMDCs express CD11c and MHC class II (MHCII) molecules and share with DCs isolated from tissues the ability to present exogenous antigens to T cells and to respond to microbial stimuli by undergoing maturation. We demonstrate that CD11c(+)MHCII(+) BMDCs are in fact a heterogeneous group of cells that comprises conventional DCs and monocyte-derived macrophages. DCs and macrophages in GM-CSF cultures both undergo maturation upon stimulation with lipopolysaccharide but respond differentially to the stimulus and remain separable entities. These results have important implications for the interpretation of a vast array of data obtained with DC culture systems.


Subject(s)
Bone Marrow Cells/immunology , Dendritic Cells/immunology , Macrophages/immunology , Animals , Antigen Presentation , CD11c Antigen/metabolism , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Histocompatibility Antigens Class II/metabolism , Immunophenotyping , Lipopolysaccharides/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Transcriptome
18.
Immunity ; 42(5): 839-849, 2015 05 19.
Article in English | MEDLINE | ID: mdl-25979418

ABSTRACT

DNGR-1 is a C-type lectin receptor that binds F-actin exposed by dying cells and facilitates cross-presentation of dead cell-associated antigens by dendritic cells. Here we present the structure of DNGR-1 bound to F-actin at 7.7 Å resolution. Unusually for F-actin binding proteins, the DNGR-1 ligand binding domain contacts three actin subunits helically arranged in the actin filament, bridging over two protofilaments, as well as two neighboring actin subunits along one protofilament. Mutation of residues predicted to mediate ligand binding led to loss of DNGR-1-dependent cross-presentation of dead cell-associated antigens, formally demonstrating that the latter depends on F-actin recognition. Notably, DNGR-1 has relatively modest affinity for F-actin but multivalent interactions allow a marked increase in binding strength. Our findings shed light on modes of actin binding by cellular proteins and reveal how extracellular detection of cytoskeletal components by dedicated receptors allows immune monitoring of loss of cellular integrity.


Subject(s)
Actins/chemistry , Cross-Priming , Dendritic Cells/immunology , Lectins, C-Type/chemistry , Models, Molecular , Receptors, Immunologic/chemistry , Actins/metabolism , Animals , Cells, Cultured , Humans , Mice , Mutation , Protein Binding
19.
EMBO J ; 38(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30872283

ABSTRACT

To protect against the harmful consequences of viral infections, organisms are equipped with sophisticated antiviral mechanisms, including cell-intrinsic means to restrict viral replication and propagation. Plant and invertebrate cells utilise mostly RNA interference (RNAi), an RNA-based mechanism, for cell-intrinsic immunity to viruses while vertebrates rely on the protein-based interferon (IFN)-driven innate immune system for the same purpose. The RNAi machinery is conserved in vertebrate cells, yet whether antiviral RNAi is still active in mammals and functionally relevant to mammalian antiviral defence is intensely debated. Here, we discuss cellular and viral factors that impact on antiviral RNAi and the contexts in which this system might be at play in mammalian resistance to viral infection.


Subject(s)
Host-Pathogen Interactions/immunology , Mammals/immunology , RNA Interference , RNA, Viral/genetics , Virus Diseases/immunology , Viruses/immunology , Animals , Antiviral Agents/administration & dosage , Host-Pathogen Interactions/genetics , Mammals/genetics , Mammals/virology , Virus Diseases/genetics , Virus Diseases/virology , Virus Replication , Viruses/isolation & purification
20.
Immunity ; 40(1): 117-27, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24412614

ABSTRACT

Interleukin 17 (IL-17)-mediated immunity plays a key role in protection from fungal infections in mice and man. Here, we confirmed that mice deficient in the IL-17 receptor or lacking the ability to secrete IL-17 are highly susceptible to systemic candidiasis, but we found that temporary blockade of the IL-17 pathway during infection in wild-type mice did not impact fungal control. Rather, mice lacking IL-17 receptor signaling had a cell-intrinsic impairment in the development of functional NK cells, which accounted for the susceptibility of these mice to systemic fungal infection. NK cells promoted antifungal immunity by secreting GM-CSF, necessary for the fungicidal activity of neutrophils. These data reveal that NK cells are crucial for antifungal defense and indicate a role for IL-17 family cytokines in NK cell development. The IL-17-NK cell axis may impact immunity against not only fungi but also bacteria, viruses, and tumors.


Subject(s)
Candidiasis/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Killer Cells, Natural/immunology , Neutrophils/immunology , Receptors, Interleukin-17/metabolism , Animals , Candidiasis/genetics , Cell Differentiation , Cells, Cultured , Cytotoxicity, Immunologic , Disease Susceptibility , Interleukin-17/genetics , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL