Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Cell ; 155(7): 1451-63, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24315484

ABSTRACT

Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.


Subject(s)
Child Development Disorders, Pervasive/microbiology , Gastrointestinal Tract/microbiology , Animals , Anxiety/metabolism , Anxiety/microbiology , Bacteroides fragilis , Behavior, Animal , Brain/physiology , Child , Child Development Disorders, Pervasive/metabolism , Disease Models, Animal , Female , Gastrointestinal Tract/metabolism , Humans , Mice , Mice, Inbred C57BL , Microbiota , Probiotics/administration & dosage
2.
Nature ; 605(7911): 687-695, 2022 05.
Article in English | MEDLINE | ID: mdl-35614246

ABSTRACT

The study and application of transition metal hydrides (TMHs) has been an active area of chemical research since the early 1960s1, for energy storage, through the reduction of protons to generate hydrogen2,3, and for organic synthesis, for the functionalization of unsaturated C-C, C-O and C-N bonds4,5. In the former instance, electrochemical means for driving such reactivity has been common place since the 1950s6 but the use of stoichiometric exogenous organic- and metal-based reductants to harness the power of TMHs in synthetic chemistry remains the norm. In particular, cobalt-based TMHs have found widespread use for the derivatization of olefins and alkynes in complex molecule construction, often by a net hydrogen atom transfer (HAT)7. Here we show how an electrocatalytic approach inspired by decades of energy storage research can be made use of in the context of modern organic synthesis. This strategy not only offers benefits in terms of sustainability and efficiency but also enables enhanced chemoselectivity and distinct, tunable reactivity. Ten different reaction manifolds across dozens of substrates are exemplified, along with detailed mechanistic insights into this scalable electrochemical entry into Co-H generation that takes place through a low-valent intermediate.

3.
Acc Chem Res ; 57(5): 751-762, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38346006

ABSTRACT

ConspectusAfter decades of palladium dominating the realm of transition-metal-catalyzed cross-coupling, recent years have witnessed exciting advances in the development of new nickel-catalyzed cross-coupling reactions to form C(sp3) centers. Nickel possesses distinct properties compared with palladium, such as facile single-electron transfer to C(sp3) electrophiles and rapid C-C reductive elimination from NiIII. These properties, among others, make nickel particularly well-suited for reductive cross-coupling (RCC) in which two electrophiles are coupled and an exogenous reductant is used to turn over the metal catalyst. Ni-catalyzed RCCs use readily available and stable electrophiles as starting materials and exhibit good functional group tolerance, which makes them appealing for applications in the synthesis of complex molecules. Building upon the foundational work in Ni-catalyzed RCCs by the groups of Kumada, Durandetti, Weix, and others, as well as the advancements in Ni-catalyzed enantioselective redox-neutral cross-couplings led by Fu and co-workers, we initiated a program to explore the feasibility of developing highly enantioselective Ni-catalyzed RCCs. Our research has also been driven by a keen interest in unraveling the factors contributing to enantioinduction and electrophile activation as we seek new avenues for advancing our understanding and further developing these reactions.In the first part of this Account, we organize our reported methods on the basis of the identity of the C(sp3) electrophiles, including benzylic chlorides, N-hydroxyphthalimide (NHP) esters, and α-chloro esters and nitriles. We highlight how the selection of specific chiral ligands plays a pivotal role in achieving high cross-selectivity and enantioselectivity. In addition, we show that reduction can be accomplished not only with heterogeneous reductants, such as Mn0, but also with the soluble organic reductant tetrakis(dimethylamino)ethylene (TDAE), as well as electrochemically. The use of homogeneous reductants, such as TDAE, is well suited for studying the mechanism of the transformation. Although this Account primarily focuses on RCCs, we also highlight our work using trifluoroborate (BF3K) salts as radical precursors for enantioselective dual-Ni/photoredox systems.At the end of this Account, we summarize the relevant mechanistic studies of two closely related asymmetric reductive alkenylation reactions developed in our laboratory and provide a context between our work and related mechanistic studies by others. We discuss how the ligand properties influence the rates and mechanisms of electrophile activation and how understanding the mode of C(sp3) radical generation can be used to optimize the yield of an RCC. Our research endeavors to offer insights on the intricate mechanisms at play in asymmetric Ni-catalyzed RCCs with the goal of using the rate of electrophile activation to improve the substrate scope of enantioselective RCCs. We anticipate that the insights we share in this Account can provide guidance for the development of new methods in this field.

4.
Nature ; 573(7775): 563-567, 2019 09.
Article in English | MEDLINE | ID: mdl-31554978

ABSTRACT

(+)-Perseanol is an isoryanodane diterpene that is isolated from the tropical shrub Persea indica1 and has potent antifeedant and insecticidal properties. It is structurally related to (+)-ryanodine, which is a high-affinity ligand for and modulator of ryanodine receptors-ligand-gated ion channels that are critical for intracellular Ca2+ signalling in most multicellular organisms2. Ryanodine itself modulates ryanodine-receptor-dependent Ca2+ release in many organisms, including mammals; however, preliminary data indicate that ryanodane and isoryanodane congeners that lack the pyrrole-2-carboxylate ester-such as perseanol-may have selective activity in insects3. Here we report a chemical synthesis of (+)-perseanol, which proceeds in 16 steps from commercially available (R)-pulegone. The synthesis involves a two-step annulation process that rapidly assembles the tetracyclic core from readily accessible cyclopentyl building blocks. This work demonstrates how convergent fragment coupling, when combined with strategic oxidation tactics, can enable the concise synthesis of complex and highly oxidized diterpene natural products.


Subject(s)
Chemistry Techniques, Synthetic , Diterpenes/chemical synthesis , Biological Products/chemistry , Cyclohexane Monoterpenes/chemistry , Persea/chemistry
5.
J Am Chem Soc ; 146(7): 4872-4882, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324710

ABSTRACT

The first general enantioselective alkyl-Nozaki-Hiyama-Kishi (NHK) coupling reactions are disclosed herein by employing a Cr-electrocatalytic decarboxylative approach. Using easily accessible aliphatic carboxylic acids (via redox-active esters) as alkyl nucleophile synthons, in combination with aldehydes and enabling additives, chiral secondary alcohols are produced in a good yield with high enantioselectivity under mild reductive electrolysis. This reaction, which cannot be mimicked using stoichiometric metal or organic reductants, tolerates a broad range of functional groups and is successfully applied to dramatically simplify the synthesis of multiple medicinally relevant structures and natural products. Mechanistic studies revealed that this asymmetric alkyl e-NHK reaction was enabled by using catalytic tetrakis(dimethylamino)ethylene, which acts as a key reductive mediator to mediate the electroreduction of the CrIII/chiral ligand complex.

6.
J Am Chem Soc ; 145(27): 14705-14715, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37358565

ABSTRACT

Mechanistic investigations of the Ni-catalyzed asymmetric reductive alkenylation of N-hydroxyphthalimide (NHP) esters and benzylic chlorides are reported. Investigations of the redox properties of the Ni-bis(oxazoline) catalyst, the reaction kinetics, and mode of electrophile activation show divergent mechanisms for these two related transformations. Notably, the mechanism of C(sp3) activation changes from a Ni-mediated process when benzyl chlorides and Mn0 are used to a reductant-mediated process that is gated by a Lewis acid when NHP esters and tetrakis(dimethylamino)ethylene is used. Kinetic experiments show that changing the identity of the Lewis acid can be used to tune the rate of NHP ester reduction. Spectroscopic studies support a NiII-alkenyl oxidative addition complex as the catalyst resting state. DFT calculations suggest an enantiodetermining radical capture step and elucidate the origin of enantioinduction for this Ni-BOX catalyst.

7.
J Am Chem Soc ; 145(28): 15071-15077, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37413695

ABSTRACT

A nickel-catalyzed N-N cross-coupling for the synthesis of hydrazides is reported. O-Benzoylated hydroxamates were efficiently coupled with a broad range of aryl and aliphatic amines via nickel catalysis to form hydrazides in an up to 81% yield. Experimental evidence implicates the intermediacy of electrophilic Ni-stabilized acyl nitrenoids and the formation of a Ni(I) catalyst via silane-mediated reduction. This report constitutes the first example of an intermolecular N-N coupling compatible with secondary aliphatic amines.

8.
Chemistry ; 29(46): e202301045, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37309269

ABSTRACT

Samarium diiodide (SmI2 ) is widely used as a strong one-electron reducing agent and is often employed to form C-C bonds in complex systems. Despite their utility, SmI2 and related salts suffer from several drawbacks that render the use of Sm reducing agents in large-scale synthesis impractical. Here, we report factors influencing the electrochemical reduction of Sm(III) to Sm(II), towards the goal of electrocatalytic Sm(III) reduction. We probe the effect of supporting electrolyte, electrode material, and Sm precursor on Sm(II)/(III) redox and on the reducing power of the Sm species. We find that the coordination strength of the counteranion of the Sm salt affects the reversibility and redox potential of the Sm(II)/(III) couple and establish that the counteranion primarily determines the reducibility of Sm(III). Electrochemically generated SmI2 performs similarly to commercial SmI2 solutions in a proof-of-concept reaction. The results will provide fundamental insight to facilitate the development of Sm-electrocatalytic reactions.

9.
Inorg Chem ; 62(34): 14010-14027, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37584501

ABSTRACT

NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.

10.
J Am Chem Soc ; 144(35): 15938-15943, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36006400

ABSTRACT

(+)-Matrine and (+)-isomatrine are tetracyclic alkaloids isolated from the plant Sophora flavescens, the roots of which are used in traditional Chinese medicine. Biosynthetically, these alkaloids are proposed to derive from three molecules of (-)-lysine via the intermediacy of the unstable cyclic imine Δ1-piperidine. Inspired by the biosynthesis, a new dearomative annulation reaction has been developed that leverages pyridine as a stable surrogate for Δ1-piperidine. In this key transformation, two molecules of pyridine are joined with a molecule of glutaryl chloride to give the complete tetracyclic framework of the matrine alkaloids in a single step. Using this dearomative annulation, isomatrine is synthesized in four steps from inexpensive commercially available chemicals. Isomatrine then serves as the precursor to additional lupin alkaloids, including matrine, allomatrine, isosophoridine, and sophoridine.


Subject(s)
Alkaloids , Sophora , Alkaloids/chemistry , Piperidines , Pyridines , Quinolizines/chemistry , Sophora/chemistry , Matrines
11.
J Am Chem Soc ; 144(44): 20190-20195, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36288571

ABSTRACT

An asymmetric cross-coupling of α-N-heterocyclic trifluoroborates with aryl bromides using Ni/photoredox dual catalysis has been developed. This C(sp2)-C(sp3) cross-coupling provides access to pharmaceutically relevant chiral N-benzylic heterocycles in good to excellent enantioselectivity when bioxazolines (BiOX) are used as the chiral ligand. High-throughput experimentation significantly streamlined reaction development by identifying BiOX ligands for further investigation and by allowing for rapid optimization of conditions for new trifluoroborate salts.


Subject(s)
Bromides , Nickel , Stereoisomerism , Molecular Structure , Catalysis , Ligands
12.
Acc Chem Res ; 54(6): 1360-1373, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33621061

ABSTRACT

With complex molecular architectures, intriguing oxidation patterns, and wide-ranging biological activities, diterpene natural products have greatly impacted research in organic chemistry and drug discovery. Our laboratory has completed total syntheses of several highly oxidized diterpenes, including the ent-kauranoids maoecrystal Z, trichorabdal A, and longikaurin E; the antibiotic pleuromutilin; and the insecticides ryanodol, ryanodine, and perseanol. In this Account, we show how analysis of oxidation patterns and inherent functional group relationships can inform key C-C bond disconnections that greatly simplify the complexity of polycyclic structures and streamline their total syntheses. In articulating these concepts, we draw heavily from the approaches to synthetic strategy that were codified by Evans, Corey, Seebach, and others, based on the formalism that heteroatoms impose an alternating acceptor and donor reactivity pattern upon a carbon skeleton. We find these ideas particularly useful when considering oxidized diterpenes as synthetic targets.In the first part of the Account, we describe the use of reductive cyclizations as strategic tactics for building polycyclic systems with γ-hydroxyketone motifs. We have leveraged Sm-ketyl radical cyclizations as "reactivity umpolungs" to generate γ-hydroxyketones in our total syntheses of the Isodon ent-kauranoid diterpenes (-)-maoecrystal Z, (-)-longikaurin E, and (-)-trichorabdal A. Following this work, we identified the same γ-hydroxyketone pattern in the diterpene antibiotic (+)-pleuromutilin, which again inspired the use of a SmI2-mediated reductive cyclization, this time to construct a bridging eight-membered ring. This collection of four total syntheses highlights how reductive cyclizations are particularly effective umpolung tactics when used to simultaneously form rings and introduce 1,4-dioxygenation patterns.In the second part of the Account, we detail the syntheses of the complex and highly oxidized ryanodane and isoryanodane diterpenes and present the oxidation pattern analysis that guided our synthetic designs. We first discuss our 15-step total synthesis of (+)-ryanodol, which incorporated five of the eight oxygen atoms in just two transformations: a dihydroxylation of (S)-pulegone and a SeO2-mediated trioxidation of the A-ring cyclopentenone. This latter transformation gave rise to an independent investigation of SeO2-mediated peroxidations of simple bicyclic cyclopent-2-en-1-ones. The syntheses of (+)-ryanodine and (+)-20-deoxyspiganthine are also presented, which required modified end-game strategies to selectively incorporate the key pyrrole-2-carboxylate ester. Finally, we describe our fragment coupling approach to prepare the isoryanodane diterpene (+)-perseanol. Using a similar oxidation pattern analysis to that developed in the synthesis of ryanodol, we again identified a two-stage strategy to install the five hydroxyl groups. This strategy was enabled by a Pd-mediated carbopalladation/carbonylation cascade and leveraged unexpected, emergent reactivity to sequence a series of late-stage oxidations.While each of the diterpene natural products discussed in this Account present unique synthetic questions, we hope that through their collective discussion, we provide a conceptual framework that condenses and summarizes the chemical knowledge we have learned and inspires future discourse and innovations in strategy design and methodology development.

13.
Angew Chem Int Ed Engl ; 61(38): e202207597, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35791274

ABSTRACT

The preparation of heterobenzylic amines by a Ni-catalyzed reductive cross-coupling between heteroaryl imines and C(sp3 ) electrophiles is reported. This umpolung-type alkylation proceeds under mild conditions, avoids the pre-generation of organometallic reagents, and exhibits good functional group tolerance. Mechanistic studies are consistent with the imine substrate acting as a redox-active ligand upon coordination to a low-valent Ni center. The resulting bis(2-imino)heterocycle⋅Ni complexes can engage in alkylation reactions with a variety of C(sp3 ) electrophiles, giving heterobenzylic amine products in good yields.


Subject(s)
Imines , Nickel , Alkylation , Amines/chemistry , Catalysis , Imines/chemistry , Nickel/chemistry , Stereoisomerism
14.
Angew Chem Int Ed Engl ; 61(5): e202111765, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34927782

ABSTRACT

Held June 24-25, 2021, the third annual Empowering Women in Organic Chemistry (EWOC) conference gathered organic chemists at all stages of the career pipeline for rich professional development opportunities and a showcase of recent scientific achievements. This Meeting Review outlines the program.

15.
Angew Chem Int Ed Engl ; 61(16): e202117480, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35112449

ABSTRACT

An enantioselective synthesis of (-)-10-hydroxyacutuminine is reported. Central to our strategy is a photochemical [2+2] cycloaddition that forges two of the quaternary stereocenters present in the acutumine alkaloids. A subsequent retro-aldol/Dieckmann sequence furnishes the spirocyclic cyclopentenone. Efforts to chlorinate the acutumine scaffold at C10 under heterolytic or radical deoxychlorination conditions led to the synthesis of an unexpected cyclopropane-containing pentacycle.


Subject(s)
Cyclization , Cycloaddition Reaction , Stereoisomerism
16.
J Am Chem Soc ; 143(11): 4187-4192, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33689345

ABSTRACT

The first total synthesis of the cytotoxic alkaloid ritterazine B is reported. The synthesis features a unified approach to both steroid subunits, employing a titanium-mediated propargylation reaction to achieve divergence from a common precursor. Other key steps include gold-catalyzed cycloisomerizations that install both spiroketals and late stage C-H oxidation to incorporate the C7' alcohol.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phenazines/chemical synthesis , Spiro Compounds/chemical synthesis , Steroids/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Catalysis , Gold/chemistry , Molecular Conformation , Phenazines/chemistry , Spiro Compounds/chemistry , Stereoisomerism , Steroids/chemistry , Urochordata/chemistry
17.
J Am Chem Soc ; 143(25): 9478-9488, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34128671

ABSTRACT

One of the most oft-employed methods for C-C bond formation involving the coupling of vinyl-halides with aldehydes catalyzed by Ni and Cr (Nozaki-Hiyama-Kishi, NHK) has been rendered more practical using an electroreductive manifold. Although early studies pointed to the feasibility of such a process, those precedents were never applied by others due to cumbersome setups and limited scope. Here we show that a carefully optimized electroreductive procedure can enable a more sustainable approach to NHK, even in an asymmetric fashion on highly complex medicinally relevant systems. The e-NHK can even enable non-canonical substrate classes, such as redox-active esters, to participate with low loadings of Cr when conventional chemical techniques fail. A combination of detailed kinetics, cyclic voltammetry, and in situ UV-vis spectroelectrochemistry of these processes illuminates the subtle features of this mechanistically intricate process.


Subject(s)
Alcohols/chemical synthesis , Aldehydes/chemistry , Amides/chemistry , Catalysis , Chromium/chemistry , Electrochemical Techniques/methods , Hydrocarbons, Brominated/chemistry , Nickel/chemistry , Stereoisomerism
18.
J Chem Inf Model ; 61(1): 156-166, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33417449

ABSTRACT

Machine-learned ranking models have been developed for the prediction of substrate-specific cross-coupling reaction conditions. Data sets of published reactions were curated for Suzuki, Negishi, and C-N couplings, as well as Pauson-Khand reactions. String, descriptor, and graph encodings were tested as input representations, and models were trained to predict the set of conditions used in a reaction as a binary vector. Unique reagent dictionaries categorized by expert-crafted reaction roles were constructed for each data set, leading to context-aware predictions. We find that relational graph convolutional networks and gradient-boosting machines are very effective for this learning task, and we disclose a novel reaction-level graph attention operation in the top-performing model.

19.
J Am Chem Soc ; 142(14): 6483-6487, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32188246

ABSTRACT

Oxidative transpositions of bicyclic cyclopentenones mediated by selenium dioxide (SeO2) are disclosed. Treatment of Pauson-Khand reaction (PKR) products with SeO2 in the presence or absence of water furnishes di- and trioxidized cyclopentenones, respectively. Mechanistic investigations reveal multiple competing oxidation pathways that depend on substrate identity and water concentration. Functionalization of the oxidized products via cross-coupling methods demonstrates their synthetic utility. These transformations allow rapid access to oxidatively transposed cyclopentenones from simple PKR products.


Subject(s)
Oxides/chemistry , Selenium/chemistry , Catalysis , Humans , Molecular Structure , Oxidation-Reduction
20.
Angew Chem Int Ed Engl ; 58(42): 14901-14905, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31410936

ABSTRACT

A Ni-catalyzed halogenation of enol triflates was developed and it enables the synthesis of a broad range of alkenyl iodides, bromides, and chlorides under mild reaction conditions. The reaction utilizes inexpensive, bench-stable Ni(OAc)2 ⋅4 H2 O as a precatalyst and proceeds at room temperature in the presence of sub-stoichiometric Zn and either 1,5-cyclooctadiene or 4-(N,N-dimethylamino)pyridine.

SELECTION OF CITATIONS
SEARCH DETAIL