Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Haematologica ; 104(1): 35-46, 2019 01.
Article in English | MEDLINE | ID: mdl-30093397

ABSTRACT

The homeobox gene HLXB9 encodes for the transcription factor HB9, which is essential for pancreatic as well as motor neuronal development. Beside its physiological expression pattern, aberrant HB9 expression has been observed in several neoplasias. Especially in infant translocation t(7;12) acute myeloid leukemia, aberrant HB9 expression is the only known molecular hallmark and is assumed to be a key factor in leukemic transformation. However, so far, only poor functional data exist addressing the oncogenic potential of HB9 or its influence on hematopoiesis. We investigated the influence of HB9 on cell proliferation and cell cycle in vitro, as well as on hematopoietic stem cell differentiation in vivo using murine and human model systems. In vitro, HB9 expression led to premature senescence in human HT1080 and murine NIH3T3 cells, providing for the first time evidence for an oncogenic potential of HB9. Onset of senescence was characterized by induction of the p53-p21 tumor suppressor network, resulting in growth arrest, accompanied by morphological transformation and expression of senescence-associated ß-galactosidase. In vivo, HB9-transduced primary murine hematopoietic stem and progenitor cells underwent a profound differentiation arrest and accumulated at the megakaryocyte/erythrocyte progenitor stage. In line, gene expression analyses revealed de novo expression of erythropoiesis-related genes in human CD34+hematopoietic stem and progenitor cells upon HB9 expression. In summary, the novel findings of HB9-dependent premature senescence and myeloid-biased perturbed hematopoietic differentiation, for the first time shed light on the oncogenic properties of HB9 in translocation t(7;12) acute myeloid leukemia.


Subject(s)
Cell Cycle , Cell Differentiation , Cellular Senescence , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/biosynthesis , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/biosynthesis , Transcription Factors/biosynthesis , Animals , Erythropoiesis/genetics , Hematopoietic Stem Cells/pathology , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , NIH 3T3 Cells , Neoplasm Proteins/genetics , Transcription Factors/genetics , Translocation, Genetic
2.
Biochem Biophys Res Commun ; 417(1): 187-91, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22155245

ABSTRACT

Several human germline-specific genes rely principally on DNA methylation for repression in somatic tissues. Many of these genes, including MAGEA1, were qualified as cancer-germline (CG), as they become activated in tumors, where losses of DNA methylation are common. The developmental stage at which CG genes acquire DNA methylation marks is unknown. Here, we show that in human preimplantation embryos, transcription of CG genes increases up to the morula stage, and then decreases dramatically in blastocysts, suggesting that CG gene silencing occurs in blastocyst stem cells. Consistently, transfection studies with MAGEA1 constructs in embryonal carcinoma (EC) cells, which represent a malignant surrogate of blastocyst-derived stem cells, revealed active repression and marked de novo methylation of MAGEA1 transgenes in these cells. Active repression of the endogenous MAGEA1 gene in human EC cells was evidenced by its rapid re-silencing following prior induction with a DNA methylation inhibitor. Moreover, de novo DNA methyltransferases DNMT3A and DNMT3B appeared to contribute to the silencing of MAGEA1 and other CG genes in EC cells. Altogether our data indicate that CG genes like MAGEA1 are programmed for repression in the blastocyst, and suggest that de novo DNA methylation is a key event in this process.


Subject(s)
Blastocyst/metabolism , DNA Methylation , Gene Silencing , Genes, Neoplasm , Pluripotent Stem Cells/metabolism , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Germ Cells/metabolism , Humans , Melanoma-Specific Antigens/genetics , DNA Methyltransferase 3B
3.
Hepatology ; 50(5): 1617-24, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19725107

ABSTRACT

UNLABELLED: It is well-accepted that hepatic stellate cells (HSCs) can develop into myofibroblast-like cells that synthesize extracellular matrix proteins and contribute to liver fibrosis. Recently, molecular markers of stem/progenitor cells were discovered in HSCs of rats. Moreover, the cells displayed the capacity to differentiate and to participate in liver regeneration. In addition, stellate cells possess signaling pathways important for maintenance of stemness and cell differentiation such as hedgehog and beta-catenin-dependent Wnt signaling. All these properties are congruently found in stem/progenitor cells. Stem cells require a special microenvironment, the so-called stem cell niche, to maintain their characteristics. Thus, we investigated if the space of Disse, where stellate cells reside in the liver innervated by the sympathetic nervous system and surrounded by sinusoidal endothelial cells and parenchymal cells, exhibits similarities with known stem cell niches. The present study describes the niche of stellate cells within the liver of rats that is composed of sinusoidal endothelial cells, which release stromal cell-derived factor-1 to attract stellate cells via the cysteine-X-cysteine receptor 4, basal lamina proteins (laminin and collagen type IV), and parenchymal cells, which synthesize beta-catenin-dependent Wnt ligands and Jagged1. CONCLUSION: The space of Disse shows analogies to typical stem cell niches comprising of basal lamina components, sympathetic innervation, and adjacent cells that constitute a milieu by paracrine factors and direct physical interactions to retain HSCs at this site and to influence their cellular fate. The space of Disse serves as a niche of stellate cells, which is a novel function of this unique organ structure.


Subject(s)
Cell Differentiation/physiology , Cell Movement/physiology , Hepatic Stellate Cells/pathology , Liver/pathology , Signal Transduction/physiology , Animals , Chemokine CXCL12/metabolism , Collagen Type IV/metabolism , Hepatic Stellate Cells/metabolism , Laminin/metabolism , Liver/metabolism , Male , Models, Animal , Rats , Rats, Wistar , Receptors, CXCR4/metabolism , Receptors, Notch/metabolism , Wnt Proteins/metabolism
4.
Stem Cells ; 27(4): 822-4, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19350682

ABSTRACT

Cancer-germline (CG) genes are a particular group of germline-specific genes that rely primarily on DNA methylation for repression in somatic tissues. In a wide variety of tumors, the promoter of these genes is demethylated, and their transcription is activated. The mechanism underlying this tumor-specific activation is still unclear. It was recently suggested that CG gene expression may be a hallmark of stem cells, and that expression of these genes in several tumors may reflect the expansion of constitutively expressing cancer stem cells. To clarify this issue, we carefully evaluated the expression of several CG genes in human stem cells of embryonic and adult origin. We found no or very weak expression of CG genes in these cells. Consistently, the promoter of CG genes was highly methylated in these cells. We conclude that CG genes do not qualify as "stemness" genes, and propose that their activation in cancers results from a tumor-specific activation process.


Subject(s)
Adult Stem Cells/physiology , Antigens, Neoplasm/genetics , DNA Methylation , Embryonic Stem Cells/physiology , Gene Expression Regulation , Genes, Neoplasm , Cell Line , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Humans , Neoplastic Stem Cells/physiology , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction
7.
Stem Cells Dev ; 20(10): 1687-99, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21219128

ABSTRACT

The epigenetic regulation by DNA methylation is an important mechanism to control the expression of stem cell factors as demonstrated in tumor cells. It was recently shown that hepatic stellate cells (HSC) express stem/progenitor cell factors and have a differentiation potential. The aim of this work was to investigate if the expression of stem cell markers is regulated by DNA methylation during activation of rat HSC. It was found that CD133, Notch1, and Notch3 are regulated via DNA methylation in HSC, whereas Nestin shows no DNA methylation in HSC and other undifferentiated cells such as embryonic stem cells and umbilical cord blood stem cells from rats. In contrast to this, DNA methylation controls Nestin expression in differentiated cells like hepatocytes and the hepatoma cell line H4IIE. Demethylation by 5-Aza-2-deoxycytidine was sufficient to induce Nestin in H4IIE cells. In quiescent stellate cells and embryonic stem cells, the Nestin expression was suppressed by histone H3 methylation at lysine 9, which is another epigenetic mechanism. Apart from the known induction of Nestin in cultured HSC, this intermediate filament protein was also induced after partial hepatectomy, indicating activation of HSC during liver regeneration. Taken together, this study demonstrates for the first time that the expression of stem cell-associated factors such as CD133, Notch1, and Notch3 is controlled by DNA methylation in HSC. The regulation of Nestin by DNA methylation seems to be restricted to differentiated cells, whereas undifferentiated cells use different epigenetic mechanisms such as histone H3 methylation to control Nestin expression.


Subject(s)
Epigenesis, Genetic , Hepatic Stellate Cells/metabolism , Stem Cell Factor/metabolism , AC133 Antigen , Animals , Antigens, CD/metabolism , Blotting, Western , Chromatin Immunoprecipitation , DNA Methylation/genetics , Fetal Blood/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Fluorescent Antibody Technique , Glycoproteins/metabolism , Hepatic Stellate Cells/cytology , Histones/metabolism , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Liver Regeneration , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin , Peptides/metabolism , Rats , Rats, Wistar , Receptors, Notch/genetics , Receptors, Notch/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL