ABSTRACT
BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Pancreatic Ductal/pathology , HSP70 Heat-Shock Proteins/metabolism , Pancreatic Neoplasms/pathology , Adaptor Proteins, Signal Transducing/genetics , Apoptosis/physiology , Apoptosis Regulatory Proteins/genetics , Autophagy/physiology , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/genetics , Humans , Macrophages/metabolism , Mechanotransduction, Cellular/physiology , Membrane Proteins/metabolism , Pancreatic Neoplasms/genetics , Paracrine Communication/physiology , Protein Domains/physiologyABSTRACT
The ent-kaurane diterpene oridonin was reported to inhibit cell migration and invasion in several experimental models. However, the process by which this molecule exerts its anti-metastatic action has not been yet elucidated. In this article, we have investigated the anti-metastatic activity of Oridonin and of one homolog, Irudonin, with the aim to shed light on the molecular mechanisms underlying the biological activity of these ent-kaurane diterpenes. Cell-based experiments revealed that both compounds are able to affect differentiation and cytoskeleton organization in mouse differentiating myoblasts, but also to impair migration, invasion and colony formation ability of two different metastatic cell lines. Using a compound-centric proteomic approach, we identified some potential targets of the two bioactive compounds among cytoskeletal proteins. Among them, Ezrin, a protein involved in the actin cytoskeleton organization, was further investigated. Our results confirmed the pivotal role of Ezrin in regulating cell migration and invasion, and indicate this protein as a potential target for new anti-cancer therapeutic approaches. The interesting activity profile, the good selectivity towards cancer cells, and the lower toxicity with respect to Oridonin, all suggest that Irudonin is a very promising anti-metastatic agent.
Subject(s)
Cell Proliferation/genetics , Cytoskeletal Proteins/genetics , Neoplasms/genetics , Proteomics , Actin Cytoskeleton/genetics , Animals , Cell Movement/drug effects , Diterpenes/pharmacology , Diterpenes, Kaurane/pharmacology , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasms/drug therapy , Neoplasms/pathologyABSTRACT
Feline immunodeficiency virus (FIV), a lentivirus causing an immunodeficiency syndrome in cats, represents a relevant model of pre-screening therapies for human immunodeficiency virus (HIV). The envelope glycoproteins gp36 in FIV and gp41 in HIV mediate the fusion of the virus with the host cell membrane. They have a common structural framework in the C-terminal region that includes a Trp-rich membrane-proximal external region (MPER) and a C-terminal heptad repeat (CHR). MPER is essential for the correct positioning of gp36 on the lipid membrane, whereas CHR is essential for the stabilization of the low-energy six-helical bundle (6HB) that is necessary for the fusion of the virus envelope with the cell membrane. Conformational data for gp36 are missing, and several aspects of the MPER structure of different lentiviruses are still debated. In the present work, we report the structural investigation of a gp36 construct that includes the MPER and part of the CHR domain (737-786gp36 CHR-MPER). Using 2D and 3D homo and heteronuclear NMR spectra on 15N and 13C double-labelled samples, we solved the NMR structure in micelles composed of dodecyl phosphocholine (DPC) and sodium dodecyl sulfate (SDS) 90/10 M: M. The structure of 737-786gp36 CHR-MPER is characterized by a helix-turn-helix motif, with a regular α-helix and a moderately flexible 310 helix, characterizing the CHR and the MPER domains, respectively. The two helices are linked by a flexible loop regulating their orientation at a ~43° angle. We investigated the positioning of 737-786gp36 CHR-MPER on the lipid membrane using spin label-enhanced NMR and ESR spectroscopies. On a different scale, using confocal microscopy imaging, we studied the effect of 737-786gp36 CHR-MPER on 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPC/DOPG) multilamellar vesicles (MLVs). This effect results in membrane budding and tubulation that is reminiscent of a membrane-plasticizing role that is typical of MPER domains during the event in which the virus envelope merges with the host cell membrane.
Subject(s)
Immunodeficiency Virus, Feline/metabolism , Magnetic Resonance Imaging/methods , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Electron Spin Resonance Spectroscopy , HIV-1 , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Phosphorylcholine/analogs & derivatives , Protein Conformation , Virus InternalizationABSTRACT
A growing number of evidences report that aging represents the major risk factor for the development of cardio and cerebrovascular diseases. Understanding Aging from a genetic, biochemical and physiological point of view could be helpful to design a better medical approach and to elaborate the best therapeutic strategy to adopt, without neglecting all the risk factors associated with advanced age. Of course, the better way should always be understanding risk-to-benefit ratio, maintenance of independence and reduction of symptoms. Although improvements in treatment of cardiovascular diseases in the elderly population have increased the survival rate, several studies are needed to understand the best management option to improve therapeutic outcomes. The aim of this review is to give a 360° panorama on what goes on in the fragile ecosystem of elderly, why it happens and what we can do, right now, with the tools at our disposal to slow down aging, until new discoveries on aging, cardio and cerebrovascular diseases are at hand.
Subject(s)
Aging , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/etiology , Age Factors , Animals , Blood Vessels/physiology , Blood Vessels/physiopathology , Disease Susceptibility , Endothelium/metabolism , Endothelium/physiopathology , Genetic Predisposition to Disease , Heart/physiology , Heart/physiopathology , Humans , Oxidative Stress , Risk , VasodilationABSTRACT
BACKGROUND: Pentraxin 3 (PTX3), the prototype of long pentraxins, has been described to be associated with endothelial dysfunction in different cardiovascular disorders. No study has yet evaluated the possible direct effect of PTX3 on vascular function. METHODS AND RESULTS: Through in vitro experiments of vascular reactivity and ultrastructural analyses, we demonstrate that PTX3 induces dysfunction and morphological changes in the endothelial layer through a P-selectin/matrix metalloproteinase-1 pathway. The latter hampered the detachment of endothelial nitric oxide synthase from caveolin-1, leading to an impairment of nitric oxide signaling. In vivo studies showed that administering PTX3 to wild-type mice induced endothelial dysfunction and increased blood pressure, an effect absent in P-selectin-deficient mice. In isolated human umbilical vein endothelial cells, PTX3 significantly blunted nitric oxide production through the matrix metalloproteinase-1 pathway. Finally, using ELISA, we found that hypertensive patients (n=31) have higher plasma levels of PTX3 and its mediators P-selectin and matrix metalloproteinase-1 than normotensive subjects (n=21). CONCLUSIONS: Our data show for the first time a direct role of PTX3 on vascular function and blood pressure homeostasis, identifying the molecular mechanisms involved. The findings in humans suggest that PTX3, P-selectin, and matrix metalloproteinase-1 may be novel biomarkers that predict the onset of vascular dysfunction in hypertensive patients.
Subject(s)
C-Reactive Protein/physiology , Endothelium, Vascular/physiopathology , Hypertension/physiopathology , Matrix Metalloproteinase 1/physiology , P-Selectin/physiology , Serum Amyloid P-Component/physiology , Animals , Blood Pressure , Caveolin 1/metabolism , Cell Membrane/metabolism , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Matrix Metalloproteinase 1/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/physiology , Nitric Oxide/metabolism , Receptors, IgG/deficiency , Signal Transduction/physiology , VasodilationABSTRACT
INTRODUCTION: MicroRNAs (miRs) regulate gene expression to support important physiological functions. Significant evidences suggest that miRs play a crucial role in many pathological events and in the cell response to various stresses. METHODS: With the aim to identify new miRs induced by perturbation of intracellular calcium homeostasis, we analysed miR expression profiles of thapsigargin (TG)-treated cells by microarray. In order to identify miR-663a-regulated genes, we evaluated proteomic changes in miR-663a-overexpressing cells by two-dimensional differential in-gel electrophoresis coupled to mass spectrometric identification of the differentially represented proteins. Microarray and proteomic analyses were supported by biochemical validation. RESULTS: Results of microarray revealed 24 differentially expressed miRs; among them, miR-663a turned out to be by ER stress and under the control of the PERK pathway of the unfolded protein response. Proteomic analysis revealed that PLOD3, which is the gene encoding for collagen-modifying lysyl hydroxylase 3 (LH3), is regulated by miR-663a. Luciferase reporter assays demonstrated that miR-663a indeed reduces LH3 expression by targeting to 3'-UTR of PLOD3 mRNA. Interestingly, miR-663a inhibition of LH3 expression generates reduced extracellular accumulation of type IV collagen, thus suggesting the involvement of miR-663a in modulating collagen 4 secretion in physiological conditions and in response to ER stress. CONCLUSION: The finding of the ER stress-induced PERK-miR-663a pathway may have important implications in the understanding of the molecular mechanisms underlying the function of this miR in normal and/or pathological conditions.
Subject(s)
Endoplasmic Reticulum/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Endoplasmic Reticulum/enzymology , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , MicroRNAs/biosynthesis , Oligonucleotide Array Sequence Analysis , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Proteome/genetics , Proteome/metabolism , Stress, Physiological/genetics , Transcriptome , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolismABSTRACT
Activating transcription factor 6α (ATF6α) is an endoplasmic reticulum protein known to participate in unfolded protein response (UPR) during ER stress in mammals. Herein, we show that in mouse C2C12 myoblasts induced to differentiate, ATF6α is the only pathway of the UPR activated. ATF6α stimulation is p38 MAPK-dependent, as revealed by the use of the inhibitor SB203580, which halts myotube formation and, at the same time, impairs trafficking of ATF6α, which accumulates at the cis-Golgi without being processed in the p50 transcriptional active form. To further evaluate the role of ATF6α, we knocked out the ATF6α gene, thus inhibiting the C2C12 myoblast from undergoing myogenesis, and this occurred independently from p38 MAPK activity. The expression of exogenous ATF6α in knocked-out ATF6α cells recover myogenesis, whereas the expression of an ATF6α mutant in the p38 MAPK phosphorylation site (T166) was not able to regain myogenesis. Genetic ablation of ATF6α also prevents the exit from the cell cycle, which is essential for muscle differentiation. Furthermore, when we inhibited differentiation by the use of dexamethasone in C2C12 cells, we found inactivation of p38 MAPK and, consequently, loss of ATF6α activity. All these findings suggest that the p-p38 MAPK/ATF6α axis, in pathophysiological conditions, regulates myogenesis by promoting the exit from the cell cycle, an essential step to start myoblasts differentiation.
ABSTRACT
Parkinson's disease (PD) represents one of the most common neurodegenerative disorders, characterized by a dopamine (DA) deficiency in striatal synapses and misfolded toxic α-synuclein aggregates with concomitant cytotoxicity. In this regard, the misfolded proteins accumulation in neurodegenerative disorders induces a remarkable perturbations of endoplasmic reticulum (ER) homeostasis leading to persistent ER stress, which in turn, effects protein synthesis, modification, and folding quality control. A large body of evidence suggests that natural products target the ER stress signaling pathway, exerting a potential action in cancers, diabetes, cardiovascular and neurodegenerative diseases. This study aims to assess the neuroprotective effect of cocoa extract and its purified fractions against a cellular model of Parkinson's disease represented by 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma. Our findings demonstrate, for the first time, the ability of cocoa to specifically targets PERK sensor, with significant antioxidant and antiapoptotic activities as both crude and fractioning extracts. In addition, cocoa also showed antiapoptotic properties in 3D cell model and a notable ability to inhibit the accumulation of α-synuclein in 6-OHDA-induced cells. Overall, these results indicate that cocoa exerts neuroprotective effects suggesting a novel possible strategy to prevent or, at least, mitigate neurodegenerative disorders, such as PD.
ABSTRACT
Endosomal trafficking is essential for cellular homeostasis. At the crossroads of distinct intracellular pathways, the endolysosomal system is crucial to maintain critical functions and adapt to the environment. Alterations of endosomal compartments were observed in cells from adult individuals with Down syndrome (DS), suggesting that the dysfunction of the endosomal pathway may contribute to the pathogenesis of DS. However, the nature and the degree of impairment, as well as the timing of onset, remain elusive. Here, by applying imaging and biochemical approaches, we demonstrate that the structure and dynamics of early endosomes are altered in DS cells. Furthermore, we found that recycling trafficking is markedly compromised in these cells. Remarkably, our results in 18-20 week-old human fetal fibroblasts indicate that alterations in the endolysosomal pathway are already present early in development. In addition, we show that overexpression of the polyphosphoinositide phosphatase synaptojanin 1 (Synj1) recapitulates the alterations observed in DS cells, suggesting a role for this lipid phosphatase in the pathogenesis of DS, likely already early in disease development. Overall, these data strengthen the link between the endolysosomal pathway and DS, highlighting a dangerous liaison among Synj1, endosomal trafficking and DS.
ABSTRACT
Thapsigargin, an inhibitor of the endoplasmic reticulum (ER) calcium transporters, generates Ca(2+)-store depletion within the ER and simultaneously increases Ca(2+) level in the cytosol. Perturbation of Ca(2+) homeostasis leads cells to cope with stressful conditions, including ER stress, which affect the folding of newly synthesized proteins and induce the accumulation of unfolded polypeptides and eventually apoptosis, via activation of the unfolded protein response pathway. In the present work, we analyzed the proteome changes in human hepatoma cells following acute treatment with thapsigargin. We highlighted a peculiar pattern of protein expression, marked by altered expression of calcium-dependent proteins, and of proteins involved in secretory pathways or in cell survival. For specific deregulated proteins, the thapsigargin-induced proteomic signature was compared by Western blotting to that resulting from the treatment of hepatoma cells with reducing agents or with proteasome inhibitors, to elicit endoplasmic reticulum stress by additional means and to reveal novel, potential targets of the unfolded protein response pathway.
Subject(s)
Calcium Channel Blockers/toxicity , Proteome/analysis , Thapsigargin/toxicity , Calcium Channel Blockers/therapeutic use , Calcium Channels/chemistry , Calcium Channels/metabolism , Cell Line, Tumor , Electrophoresis, Gel, Two-Dimensional , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Thapsigargin/therapeutic useABSTRACT
In the last decades, the endoplasmic reticulum (ER) has emerged as a key coordinator of cellular homeostasis, thanks to its physical interconnection to almost all intracellular organelles. In particular, an intense and mutual crosstalk between the ER and mitochondria occurs at the mitochondria-ER contacts (MERCs). MERCs ensure a fine-tuned regulation of fundamental cellular processes, involving cell fate decision, mitochondria dynamics, metabolism, and proteostasis, which plays a pivotal role in the tumorigenesis and therapeutic response of cancer cells. Intriguingly, recent studies have shown that different components of the unfolded protein response (UPR) machinery, including PERK, IRE1α, and ER chaperones, localize at MERCs. These proteins appear to exhibit multifaceted roles that expand beyond protein folding and UPR transduction and are often related to the control of calcium fluxes to the mitochondria, thus acquiring relevance to cell survival and death. In this review, we highlight the novel functions played by PERK, IRE1α, and ER chaperones at MERCs focusing on their impact on tumor development.
ABSTRACT
Many severe human pathologies are related to alterations of the fine balance between histone acetylation and deacetylation; because not all such diseases involve hypoacetylation, but also hyperacetylation, compounds able to enhance or repress the activities of histone acetyltransferases (HATs) could be promising therapeutic agents. We evaluated in vitro and in cell the ability of eleven natural polyisoprenylated benzophenone derivatives to modulate the HAT activity of p300/CBP, an enzyme that plays a pivotal role in a variety of cellular processes. Some of the tested compounds bound efficiently to the p300/CBP protein: in particular, guttiferone A, guttiferone E and clusianone inhibit its HAT activity, whereas nemorosone showed a surprising ability to activate the enzyme. The ability of nemorosone to penetrate cell membranes and modulate histone acetylation into the cell together with its high affinity for the p300/CBP enzyme made this compound a suitable lead for the design of optimized anticancer drugs. Besides, the studies performed at a cellular and molecular level on both the inhibitors and the activator provided new insights into the modulation mechanism of p300/CBP by small molecules.
Subject(s)
Benzophenones/chemistry , p300-CBP Transcription Factors/agonists , Acetylation , Benzophenones/pharmacology , Benzoquinones , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , G1 Phase , Histones/metabolism , Humans , Kinetics , Thermodynamics , p300-CBP Transcription Factors/metabolismABSTRACT
Gp36 is the virus envelope glycoproteins catalyzing the fusion of the feline immunodeficiency virus with the host cells. The peptide C8 is a tryptophan-rich peptide corresponding to the fragment 770W-I777 of gp36 exerting antiviral activity by binding the membrane cell and inhibiting the virus entry. Several factors, including the membrane surface charge, regulate the binding of C8 to the lipid membrane. Based on the evidence that imperceptible variation of membrane charge may induce a dramatic effect in several critical biological events, in the present work we investigate the effect induced by systematic variation of charge in phospholipid bilayers on the aptitude of C8 to interact with lipid membranes, the tendency of C8 to assume specific conformational states and the re-organization of the lipid bilayer upon the interaction with C8. Accordingly, employing a bottom-up multiscale protocol, including CD, NMR, ESR spectroscopy, atomistic molecular dynamics simulations, and confocal microscopy, we studied C8 in six membrane models composed of different ratios of zwitterionic/negatively charged phospholipids. Our data show that charge content modulates C8-membrane binding with significant effects on the peptide conformations. C8 in micelle solution or in SUV formed by DPC or DOPC zwitterionic phospholipids assumes regular ß-turn structures that are progressively destabilized as the concentration of negatively charged SDS or DOPG phospholipids exceed 40%. Interaction of C8 with zwitterionic membrane surface is mediated by Trp1 and Trp4 that are deepened in the membrane, forming H-bonds and cation-π interactions with the DOPC polar heads. Additional stabilizing salt bridge interactions involve Glu2 and Asp3. MD and ESR data show that the C8-membrane affinity increases as the concentration of zwitterionic phospholipid increases. In the lipid membrane characterized by an excess of zwitterionic phospholipids, C8 is adsorbed at the membrane interface, inducing a stiffening of the outer region of the DOPC bilayer. However, the bound of C8 significantly perturbs the whole organization of lipid bilayer resulting in membrane remodeling. These events, measurable as a variation of the bilayer thickness, are the onset mechanism of the membrane fusion and vesicle tubulation observed in confocal microscopy by imaging zwitterionic MLVs in the presence of C8 peptide.
ABSTRACT
Interleukin (IL)-6 has been detected in serum and ascites from patients affected by epithelial ovarian cancers, and also in some human ovarian cancer cell lines. To investigate the role of IL-6 in ovarian lesions, we first measured its levels in serum samples of 24 healthy donors and in 17 and 9 patients affected by ovarian carcinomas and ovarian benign cysts respectively. IL-6 levels were significantly higher than healthy donors in serum samples from ovarian cancer patients, but not in benign ovarian cysts. We then investigated the mechanism of IL-6 production in two cell lines obtained from the same patient with high grade serous ovarian carcinoma before (PEA1) and after (PEA2) development of cisplatinum resistance. The levels of intracellular IL-6, analysed by western blotting, did not relevantly differ in the two cell lines, and they did not change after the cell treatment with an AKT inhibitor. Although the interleukin was present in supernatants from both cell lines, its concentration in the supernatant of chemoresistant cells was significantly higher than chemosensitive cells. Interestingly, exposure to the AKT inhibitor resulted in a reduced IL-6 release in PEA1, but not in PEA2 cells. These results let infer different mechanisms of IL-6 release in chemoresistant and chemosensitive cell lines, and contribute new insights in ovarian cancer biology that suggest more in depth studies about the role of AKT in IL-6 release and in development of chemoresistance.
ABSTRACT
The recent discovery of interconnections between the endoplasmic reticulum (ER) membrane and those of almost all the cell compartments is providing novel perspectives for the understanding of the molecular events underlying cellular mechanisms in both physiological and pathological conditions. In particular, growing evidence strongly supports the idea that the molecular interactions occurring between ER and mitochondrial membranes, referred as the mitochondria (MT)-ER contacts (MERCs), may play a crucial role in aging and in the development of age-associated diseases. As emerged in the last decade, MERCs behave as signaling hubs composed by structural components that act as critical players in different age-associated disorders, such as neurodegenerative diseases and motor disorders, cancer, metabolic syndrome, as well as cardiovascular diseases. Age-associated disorders often derive from mitochondrial or ER dysfunction as consequences of oxidative stress, mitochondrial DNA mutations, accumulation of misfolded proteins, and defective organelle turnover. In this review, we discuss the recent advances associating MERCs to aging in the context of ER-MT crosstalk regulating redox signaling, ER-to MT lipid transfer, mitochondrial dynamics, and autophagy.
ABSTRACT
PARK20, an early onset autosomal recessive parkinsonism is due to mutations in the phosphatidylinositol-phosphatase Synaptojanin 1 (Synj1). We have recently shown that the early endosomal compartments are profoundly altered in PARK20 fibroblasts as well as the endosomal trafficking. Here, we report that PARK20 fibroblasts also display a drastic alteration of the architecture and function of the early secretory compartments. Our results show that the exit machinery from the Endoplasmic Reticulum (ER) and the ER-to-Golgi trafficking are markedly compromised in patient cells. As a consequence, PARK20 fibroblasts accumulate large amounts of cargo proteins within the ER, leading to the induction of ER stress. Interestingly, this stressful state is coupled to the activation of the PERK/eIF2α/ATF4/CHOP pathway of the Unfolded Protein Response (UPR). In addition, PARK20 fibroblasts reveal upregulation of oxidative stress markers and total ROS production with concomitant alteration of the morphology of the mitochondrial network. Interestingly, treatment of PARK20 cells with GSK2606414 (GSK), a specific inhibitor of PERK activity, restores the level of ROS, signaling a direct correlation between ER stress and the induction of oxidative stress in the PARK20 cells. All together, these findings suggest that dysfunction of early secretory pathway might contribute to the pathogenesis of the disease.
ABSTRACT
In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction.
Subject(s)
Endoplasmic Reticulum/metabolism , Endothelial Cells/metabolism , Oxidative Stress/physiology , Unfolded Protein Response/physiology , HumansABSTRACT
Feline immunodeficiency virus (FIV) is a naturally occurring Lentivirus causing acquired immunodeficiency syndrome in felines. It is considered a useful non-primate model to study HIV infection, and to test anti-HIV vaccine. Similarly to HIV, FIV enters cells via a mechanism involving a surface glycoprotein named gp36. C8 is a short synthetic peptide corresponding to the residues 770WEDWVGWI777 of gp36 membrane proximal external region (MPER). It elicits antiviral activity by inhibiting the fusion of the FIV and host cell membrane. C8 is endowed with evident membrane binding property, inducing alteration of the phospholipid bilayer and membrane fusion. The presence and the position of tryptophan residues in C8 are important for antiviral activity: the C8 derivative C6a, obtained by truncating the N-terminal 770WE771 residues, exhibits conserved antiviral activity, while the C8 derivative C6b, derived from the truncation of the C-terminal 776WI777, is nearly inactive. To elucidate the structural factors that induce the different activity profiles of C6a and C6b, in spite of their similarity, we investigated the structural behaviour of the two peptides in membrane mimicking environments. Conformational data on the short peptides C6a and C6b, matched to those of their parent peptide C8, allow describing a pharmacophore model of antiviral fusion inhibitors. This includes the essential structural motifs to design new simplified molecules overcoming the pharmacokinetic and high cost limitations affecting the antiviral entry inhibitors that currently are in therapy.