Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
New Phytol ; 242(1): 192-210, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332398

ABSTRACT

Eukaryotes have evolved sophisticated post-translational modifications to regulate protein function and numerous biological processes, including ubiquitination controlled by the coordinated action of ubiquitin-conjugating enzymes and deubiquitinating enzymes (Dubs). However, the function of deubiquitination in pathogenic fungi is largely unknown. Here, the distribution of Dubs in the fungal kingdom was surveyed and their functions were systematically characterized using the phytopathogen Fusarium graminearum as the model species, which causes devastating diseases of all cereal species world-wide. Our findings demonstrate that Dubs are critical for fungal development and virulence, especially the ubiquitin-specific protease 15 (Ubp15). Global ubiquitome analysis and subsequent experiments identified three important substrates of Ubp15, including the autophagy-related protein Atg8, the mitogen-activated protein kinase Gpmk1, and the mycotoxin deoxynivalenol (DON) biosynthetic protein Tri4. Ubp15 regulates the deubiquitination of the Atg8, thereby impacting its subcellular localization and the autophagy process. Moreover, Ubp15 also modulates the deubiquitination of Gpmk1 and Tri4. This modulation subsequently influences their protein stabilities and further affects the formation of penetration structures and the biosynthetic process of DON, respectively. Collectively, our findings reveal a previously unknown regulatory pathway of a deubiquitinating enzyme for fungal virulence and highlight the potential of Ubp15 as a target for combating fungal diseases.


Subject(s)
Fusarium , Mycotoxins , Virulence , Fungal Proteins/metabolism , Mycotoxins/metabolism , Deubiquitinating Enzymes/metabolism , Plant Diseases/microbiology
2.
Dev Cell ; 59(15): 1954-1971.e7, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38776924

ABSTRACT

A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.


Subject(s)
Fructose , Humans , Animals , Mice , Fructose/metabolism , Chromatin/metabolism , Aldehyde Reductase/metabolism , Aldehyde Reductase/genetics , Leukemia/metabolism , Leukemia/pathology , Leukemia/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromatin Assembly and Disassembly , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , Adenosine Triphosphatases
SELECTION OF CITATIONS
SEARCH DETAIL