Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Eur Heart J ; 45(24): 2145-2154, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38626306

ABSTRACT

BACKGROUND AND AIMS: Emerging evidence has raised an obesity paradox in observational studies of body mass index (BMI) and health among the oldest-old (aged ≥80 years), as an inverse relationship of BMI with mortality was reported. This study was to investigate the causal associations of BMI, waist circumference (WC), or both with mortality in the oldest-old people in China. METHODS: A total of 5306 community-based oldest-old (mean age 90.6 years) were enrolled in the Chinese Longitudinal Healthy Longevity Survey (CLHLS) between 1998 and 2018. Genetic risk scores were constructed from 58 single-nucleotide polymorphisms (SNPs) associated with BMI and 49 SNPs associated with WC to subsequently derive causal estimates for Mendelian randomization (MR) models. One-sample linear MR along with non-linear MR analyses were performed to explore the associations of genetically predicted BMI, WC, and their joint effect with all-cause mortality, cardiovascular disease (CVD) mortality, and non-CVD mortality. RESULTS: During 24 337 person-years of follow-up, 3766 deaths were documented. In observational analyses, higher BMI and WC were both associated with decreased mortality risk [hazard ratio (HR) 0.963, 95% confidence interval (CI) 0.955-0.971 for a 1-kg/m2 increment of BMI and HR 0.971 (95% CI 0.950-0.993) for each 5 cm increase of WC]. Linear MR models indicated that each 1 kg/m2 increase in genetically predicted BMI was monotonically associated with a 4.5% decrease in all-cause mortality risk [HR 0.955 (95% CI 0.928-0.983)]. Non-linear curves showed the lowest mortality risk at the BMI of around 28.0 kg/m2, suggesting that optimal BMI for the oldest-old may be around overweight or mild obesity. Positive monotonic causal associations were observed between WC and all-cause mortality [HR 1.108 (95% CI 1.036-1.185) per 5 cm increase], CVD mortality [HR 1.193 (95% CI 1.064-1.337)], and non-CVD mortality [HR 1.110 (95% CI 1.016-1.212)]. The joint effect analyses indicated that the lowest risk was observed among those with higher BMI and lower WC. CONCLUSIONS: Among the oldest-old, opposite causal associations of BMI and WC with mortality were observed, and a body figure with higher BMI and lower WC could substantially decrease the mortality risk. Guidelines for the weight management should be cautiously designed and implemented among the oldest-old people, considering distinct roles of BMI and WC.


Subject(s)
Body Mass Index , Mendelian Randomization Analysis , Waist Circumference , Humans , Female , Male , Aged, 80 and over , China/epidemiology , Cardiovascular Diseases/mortality , Cardiovascular Diseases/genetics , Polymorphism, Single Nucleotide , Obesity/genetics , Obesity/mortality , Cause of Death , Risk Factors , Mortality
2.
World J Pediatr ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401044

ABSTRACT

INTRODUCTION: Methylmalonic acidemia (MMA) is a disorder of autosomal recessive inheritance, with an estimated prevalence of 1:50,000. First-tier clinical diagnostic tests often return many false positives [five false positive (FP): one true positive (TP)]. In this work, our goal was to refine a classification model that can minimize the number of false positives, currently an unmet need in the upstream diagnostics of MMA. METHODS: We developed machine learning multivariable screening models for MMA with utility as a secondary-tier tool for false positives reduction. We utilized mass spectrometry-based features consisting of 11 amino acids and 31 carnitines derived from dried blood samples of neonatal patients, followed by additional ratio feature construction. Feature selection strategies (selection by filter, recursive feature elimination, and learned vector quantization) were used to determine the input set for evaluating the performance of 14 classification models to identify a candidate model set for an ensemble model development. RESULTS: Our work identified computational models that explore metabolic analytes to reduce the number of false positives without compromising sensitivity. The best results [area under the receiver operating characteristic curve (AUROC) of 97%, sensitivity of 92%, and specificity of 95%] were obtained utilizing an ensemble of the algorithms random forest, C5.0, sparse linear discriminant analysis, and autoencoder deep neural network stacked with the algorithm stochastic gradient boosting as the supervisor. The model achieved a good performance trade-off for a screening application with 6% false-positive rate (FPR) at 95% sensitivity, 35% FPR at 99% sensitivity, and 39% FPR at 100% sensitivity. CONCLUSIONS: The classification results and approach of this research can be utilized by clinicians globally, to improve the overall discovery of MMA in pediatric patients. The improved method, when adjusted to 100% precision, can be used to further inform the diagnostic process journey of MMA and help reduce the burden for patients and their families.

3.
Int J Biol Macromol ; 277(Pt 1): 133952, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029829

ABSTRACT

Gastric cancer(GC)is one of the most common gastrointestinal malignant tumors in the world, requiring the development of novel therapeutic agents with reduced toxicity. Rehmannia polysaccharide (RPS) possesses immunomodulatory and anti-tumor properties, yet its efficacy is suboptimal. To enhance its biological activity, we subjected RPS to molecular modifications, resulting in phosphorylated Rehmannia polysaccharides (P-RPS). Using the mixed phosphate method, we synthesized P-RPS and optimized the synthesis conditions through a combination of single-factor and response surface methodologies. In vitro studies on P-RPS's anti-tumor activity showed no direct influence on the viability of GC cells. However, P-RPS induced the transformation of PMA-activated THP-1 cells into the M1 phenotype. We collected conditioned medium (CM) of THP-1 cells to stimulate gastric cancer cells and CM-P-RPS significantly promoted apoptosis of gastric cancer cells and inhibited cell proliferation, and reduced cell migration. Mechanistically, CM-P-RPS inhibits the Wnt/ß-catenin signaling pathway through LGR6, leading to the suppression of tumor growth. Furthermore, P-RPS demonstrated a significant inhibitory effect on tumor growth in vivo, suggesting its potential as a promising therapeutic agent for GC treatment.

SELECTION OF CITATIONS
SEARCH DETAIL