Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
BMC Microbiol ; 23(1): 32, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36707764

ABSTRACT

BACKGROUND: Interactions between diet, stress and the gut microbiome are of interest as a means to modulate health and performance. Here, in vitro fermentation was used to explore the effects of a sudden change in diet, 21 days sole sustenance on the Meal, Ready-to-Eat (MRE) U.S. military combat ration, on inter-species competition and functional potential of the human gut microbiota. Human fecal samples collected before and after MRE intervention or consuming a habitual diet (HAB) were introduced to nutrient-rich media supplemented with starch for in vitro fermentation under ascending colon conditions. 16S rRNA amplicon and Whole-metagenome sequencing (WMS) were used to measure community composition and functional potential. Specific statistical analyses were implemented to detect changes in relative abundance from taxa, genes and pathways. RESULTS: Differential changes in relative abundance of 11 taxa, Dorea, Lachnospira, Bacteroides fragilis, Akkermansia muciniphila, Bifidobacterium adolescentis, Betaproteobacteria, Enterobacteriaceae, Bacteroides egerthii, Ruminococcus bromii, Prevotella, and Slackia, and nine Carbohydrate-Active Enzymes, specifically GH13_14, over the 24 h fermentation were observed as a function of the diet intervention and correlated to specific taxa of interest. CONCLUSIONS: These findings suggest that consuming MRE for 21 days acutely effects changes in gut microbiota structure in response to carbohydrate but may induce alterations in metabolic capacity. Additionally, these findings demonstrate the potential of starch as a candidate supplemental strategy to functionally modulate specific gut commensals during stress-induced states.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Diet , Feces/microbiology , Carbohydrates , Starch/metabolism , Dietary Supplements
2.
BMC Biotechnol ; 19(1): 100, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31864334

ABSTRACT

BACKGROUND: Bacterial surface display libraries are a popular tool for novel ligand discovery due to their ease of manipulation and rapid growth rates. These libraries typically express a scaffold protein embedded within the outer membrane with a short, surface-exposed peptide that is either terminal or is incorporated into an outer loop, and can therefore interact with and bind to substrates of interest. RESULTS: In this study, we employed a novel bacterial peptide display library which incorporates short 15-mer peptides on the surface of E. coli, co-expressed with the inducible red fluorescent protein DsRed in the cytosol, to investigate population diversity over two rounds of biopanning. The naive library was used in panning trials to select for binding affinity against 3D printing plastic coupons made from polylactic acid (PLA). Resulting libraries were then deep-sequenced using next generation sequencing (NGS) to investigate selection and diversity. CONCLUSIONS: We demonstrated enrichment for PLA binding versus a sapphire control surface, analyzed population composition, and compared sorting rounds using a binding assay and fluorescence microscopy. The capability to produce and describe display libraries through NGS across rounds of selection allows a deeper understanding of population dynamics that can be better directed towards peptide discovery.


Subject(s)
Bioprospecting/methods , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing/methods , Peptide Library , Peptides/genetics , Escherichia coli/chemistry , Escherichia coli/metabolism , Peptides/metabolism
3.
PLoS Pathog ; 8(7): e1002795, 2012.
Article in English | MEDLINE | ID: mdl-22807677

ABSTRACT

Trypanosomatid protozoan parasites lack a functional heme biosynthetic pathway, so must acquire heme from the environment to survive. However, the molecular pathway responsible for heme acquisition by these organisms is unknown. Here we show that L. amazonensis LHR1, a homolog of the C. elegans plasma membrane heme transporter HRG-4, functions in heme transport. Tagged LHR1 localized to the plasma membrane and to endocytic compartments, in both L. amazonensis and mammalian cells. Heme deprivation in L. amazonensis increased LHR1 transcript levels, promoted uptake of the fluorescent heme analog ZnMP, and increased the total intracellular heme content of promastigotes. Conversely, deletion of one LHR1 allele reduced ZnMP uptake and the intracellular heme pool by approximately 50%, indicating that LHR1 is a major heme importer in L. amazonensis. Viable parasites with correct replacement of both LHR1 alleles could not be obtained despite extensive attempts, suggesting that this gene is essential for the survival of promastigotes. Notably, LHR1 expression allowed Saccharomyces cerevisiae to import heme from the environment, and rescued growth of a strain deficient in heme biosynthesis. Syntenic genes with high sequence identity to LHR1 are present in the genomes of several species of Leishmania and also Trypanosoma cruzi and Trypanosoma brucei, indicating that therapeutic agents targeting this transporter could be effective against a broad group of trypanosomatid parasites that cause serious human disease.


Subject(s)
Heme/metabolism , Leishmania mexicana/metabolism , Membrane Transport Proteins/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , HeLa Cells , Heme/deficiency , Humans , Leishmania mexicana/pathogenicity , Macrophages/metabolism , Macrophages/parasitology , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Metalloporphyrins/metabolism , Mice , Molecular Sequence Data , Protein Structure, Tertiary , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
N Biotechnol ; 81: 10-19, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38408724

ABSTRACT

A significant hurdle for the widespread implementation and use of synthetic biology is the challenge of highly efficient introduction of DNA into microorganisms. This is especially a barrier for the utilization of non-model organisms and/or novel chassis species for a variety of applications, ranging from molecular biology to biotechnology and biomanufacturing applications. Common approaches to episomal and chromosomal gene editing, which employ techniques such as chemical competence and electroporation, are typically only amenable to a small subset of microbial species while leaving the vast majority of microorganisms in nature genetically inaccessible. To address this challenge, we have employed the previously described B. subtilis broad-host conjugation strain, XPORT, which was modularly designed for loading DNA cargo and conjugating such DNA into recalcitrant microbes. In this current work, we have leveraged and adapted the XPORT strain for use in a droplet microfluidic platform to enable increased efficiency of conjugation-based DNA transfer. The system named DNA ENTRAP (DNA ENhanced TRAnsfer Platform) utilizes cell-encapsulated water-in-oil emulsion droplets as pico-liter-volume bioreactors that allows controlled contacts between the donor and receiver cells within the emulsion bioreactor. This allowed enhanced XPORT-mediated genetic transfer over the current benchtop XPORT process, demonstrated using two different Bacillus subtilis strains (donor and receiver), as well as increased throughput (e.g., number of successfully conjugated cells) due to the automated assay steps inherent to microfluidic lab-on-a-chip systems. DNA ENTRAP paves the way for a streamlined automation of culturing and XPORT-mediated genetic transfer processes as well as future high-throughput cell engineering and screening applications.


Subject(s)
DNA , Microfluidics , Microfluidics/methods , Emulsions , DNA/genetics , Biotechnology , Plasmids
5.
ACS Appl Mater Interfaces ; 15(9): 11391-11402, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847552

ABSTRACT

Discovery of microorganisms and their relevant surface peptides that specifically bind to target materials of interest can be achieved through iterative biopanning-based screening of cellular libraries having high diversity. Recently, microfluidics-based biopanning methods have been developed and exploited to overcome the limitations of conventional methods where controlling the shear stress applied to remove cells that do not bind or only weakly bind to target surfaces is difficult and the overall experimental procedure is labor-intensive. Despite the advantages of such microfluidic methods and successful demonstration of their utility, these methods still require several rounds of iterative biopanning. In this work, a magnetophoretic microfluidic biopanning platform was developed to isolate microorganisms that bind to target materials of interest, which is gold in this case. To achieve this, gold-coated magnetic nanobeads, which only attached to microorganisms that exhibit high affinity to gold, were used. The platform was first utilized to screen a bacterial peptide display library, where only the cells with surface peptides that specifically bind to gold could be isolated by the high-gradient magnetic field generated within the microchannel, resulting in enrichment and isolation of many isolates with high affinity and high specificity toward gold even after only a single round of separation. The amino acid profile of the resulting isolates was analyzed to provide a better understanding of the distinctive attributes of peptides that contribute to their specific material-binding capabilities. Next, the microfluidic system was utilized to screen soil microbes, a rich source of extremely diverse microorganisms, successfully isolating many naturally occurring microorganisms that show strong and specific binding to gold. The results show that the developed microfluidic platform is a powerful screening tool for identifying microorganisms that specifically bind to a target material surface of interest, which can greatly accelerate the development of new peptide-driven biological materials and hybrid organic-inorganic materials.


Subject(s)
Microfluidics , Peptide Library , Microfluidics/methods , Peptides/chemistry , Magnetics , Gold
6.
Commun Biol ; 6(1): 1250, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38082099

ABSTRACT

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has provided unprecedented insight into mutations enabling immune escape. Understanding how these mutations affect the dynamics of antibody-antigen interactions is crucial to the development of broadly protective antibodies and vaccines. Here we report the characterization of a potent neutralizing antibody (N3-1) identified from a COVID-19 patient during the first disease wave. Cryogenic electron microscopy revealed a quaternary binding mode that enables direct interactions with all three receptor-binding domains of the spike protein trimer, resulting in extraordinary avidity and potent neutralization of all major variants of concern until the emergence of Omicron. Structure-based rational design of N3-1 mutants improved binding to all Omicron variants but only partially restored neutralization of the conformationally distinct Omicron BA.1. This study provides new insights into immune evasion through changes in spike protein dynamics and highlights considerations for future conformationally biased multivalent vaccine designs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
7.
bioRxiv ; 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33851158

ABSTRACT

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform. Antibodies were identified from unpaired donor B-cell and serum repertoires using yeast surface display, proteomics, and public light chain screening. Cryo-EM and functional characterization of the antibodies identified N3-1, an antibody that binds avidly (Kd,app = 68 pM) to the receptor binding domain (RBD) of the spike protein and robustly neutralizes the virus in vitro. This antibody likely binds all three RBDs of the trimeric spike protein with a single IgG. Importantly, N3-1 equivalently binds spike proteins from emerging SARS-CoV-2 variants of concern, neutralizes UK variant B.1.1.7, and binds SARS-CoV spike with nanomolar affinity. Taken together, the strategies described herein will prove broadly applicable in interrogating adaptive immunity and developing rapid response biological countermeasures to emerging pathogens.

8.
G3 (Bethesda) ; 9(6): 1909-1919, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30975702

ABSTRACT

An individual orb weaving spider can spin up to seven different types of silk, each with unique functions and material properties. The capture spiral silk of classic two-dimensional aerial orb webs is coated with an amorphous glue that functions to retain prey that get caught in a web. This unique modified silk is partially comprised of spidroins (spider fibroins) encoded by two members of the silk gene family. The glue differs from solid silk fibers as it is a viscoelastic, amorphic, wet material that is responsive to environmental conditions. Most spidroins are encoded by extremely large, highly repetitive genes that cannot be sequenced using short read technology alone, as the repetitive regions are longer than read length. We sequenced for the first time the complete genomic Aggregate Spidroin 1 (AgSp1) and Aggregate Spidroin 2 (AgSp2) glue genes of orb weaving spider Argiope trifasciata using error-prone long reads to scaffold for high accuracy short reads. The massive coding sequences are 42,270 bp (AgSp1) and 20,526 bp (AgSp2) in length, the largest silk genes currently described. The majority of the predicted amino acid sequence of AgSp1 consists of two similar but distinct motifs that are repeated ∼40 times each, while AgSp2 contains ∼48 repetitions of an AgSp1-similar motif, interspersed by regions high in glutamine. Comparisons of AgSp repetitive motifs from orb web and cobweb spiders show regions of strict conservation followed by striking diversification. Glues from these two spider families have evolved contrasting material properties in adhesion (stickiness), extensibility (stretchiness), and elasticity (the ability of the material to resume its native shape), which we link to mechanisms established for related silk genes in the same family. Full-length aggregate spidroin sequences from diverse species with differing material characteristics will provide insights for designing tunable bio-inspired adhesives for a variety of unique purposes.


Subject(s)
Fibrin Tissue Adhesive , Fibroins/genetics , Spiders/genetics , Amino Acid Sequence , Animals , Fibroins/chemistry , Fibroins/metabolism , Glycosylation , High-Throughput Nucleotide Sequencing , Multigene Family , Silk/chemistry , Silk/genetics , Silk/metabolism , Spiders/metabolism
9.
mSystems ; 3(5)2018.
Article in English | MEDLINE | ID: mdl-30374459

ABSTRACT

Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.

10.
Nat Microbiol ; 3(9): 1043-1053, 2018 09.
Article in English | MEDLINE | ID: mdl-30127494

ABSTRACT

Engineering microorganisms to promote human or plant health will require manipulation of robust bacteria that are capable of surviving in harsh, competitive environments. Genetic engineering of undomesticated bacteria can be limited by an inability to transfer DNA into the cell. Here we developed an approach based on the integrative and conjugative element from Bacillus subtilis (ICEBs1) to overcome this problem. A donor strain (XPORT) was built to transfer miniaturized integrative and conjugative elements (mini-ICEBs1) to undomesticated bacteria. The strain was engineered to enable inducible control over conjugation, to integrate delivered DNA into the chromosome of the recipient, to restrict spread of heterologous DNA through separation of the type IV secretion system from the transferred DNA, and to enable simple isolation of engineered bacteria through a D-alanine auxotrophy. Efficient DNA transfer (10-1 to 10-7 conjugation events per donor) is demonstrated using 35 Gram-positive strains isolated from humans (skin and gut) and soil. Mini-ICEBs1 was used to rapidly characterize the performance of an isopropyl-ß-D-thiogalactoside (IPTG)-inducible reporter across dozens of strains and to transfer nitrogen fixation to four Bacillus species. Finally, XPORT was introduced to soil to demonstrate DNA transfer under non-ideal conditions.


Subject(s)
Bacillus subtilis/genetics , Conjugation, Genetic/genetics , DNA, Bacterial/genetics , Gene Transfer Techniques , Genetic Engineering/methods , Interspersed Repetitive Sequences/genetics , DNA, Bacterial/metabolism , Gastrointestinal Microbiome/genetics , Nitrogen Fixation/genetics , Skin/microbiology , Soil Microbiology
11.
PLoS Negl Trop Dis ; 9(5): e0003804, 2015 May.
Article in English | MEDLINE | ID: mdl-26001191

ABSTRACT

Leishmania spp. are trypanosomatid parasites that replicate intracellularly in macrophages, causing serious human morbidity and mortality throughout the world. Trypanosomatid protozoa cannot synthesize heme, so must acquire this essential cofactor from their environment. Earlier studies identified LHR1 as a Leishmania amazonensis transmembrane protein that mediates heme uptake. Null mutants of LHR1 are not viable and single knockout strains have reduced virulence, but very little is known about the properties of LHR1 directly associated with heme transport. Here, we use functional assays in Saccharomyces cerevisiae to show that specific tyrosine residues within the first three predicted transmembrane domains of LHR1 are required for efficient heme uptake. These tyrosines are unique to LHR1, consistent with the low similarity between LHR1 and its corresponding homologs in C. elegans and human. Substitution of these tyrosines in LHR1 resulted in varying degrees of heme transport inhibition, phenotypes that closely mirrored the impaired ability of L. amazonensis to replicate as intracellular amastigotes in macrophages and generate cutaneous lesions in mice. Taken together, our results imply that the mechanism for heme transport by LHR1 is distinctive and may have adapted to secure heme, a limiting cofactor, inside the host. Since LHR1 is significantly divergent from the human heme transporter HRG1, our findings lay the groundwork for selective targeting of LHR1 by small molecule antagonists.


Subject(s)
Heme/metabolism , Leishmania mexicana/pathogenicity , Protozoan Proteins/metabolism , Tyrosine , Amino Acid Sequence , Animals , Biological Transport , Caenorhabditis elegans/genetics , Female , Genes, Reporter , Humans , Leishmania mexicana/genetics , Leishmania mexicana/metabolism , Macrophages/parasitology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Protozoan Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sequence Alignment , Virulence
12.
Curr Opin Microbiol ; 16(6): 716-21, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23962817

ABSTRACT

Iron is essential for many metabolic pathways, but is toxic in excess. Recent identification of the ferric iron reductase LFR1, the ferrous iron transporter LIT1, and the heme transporter LHR1 greatly advanced our understanding of how Leishmania parasites acquire iron and regulate its uptake. LFR1 and LIT1 have close orthologs in plants, and are required for Leishmania virulence. Consistent with the lack of heme biosynthesis in trypanosomatids, LHR1 and LABCG5, a protein involved in heme salvage from hemoglobin, seem essential for Leishmania survival. LFR1, LIT1 and LHR1 are upregulated under low iron availability, in agreement with the need to prevent excessive iron uptake. Future studies should clarify how Leishmania interacts with the iron homeostasis machinery of its host cell, the macrophage.


Subject(s)
Iron/metabolism , Leishmania/metabolism , Metabolic Networks and Pathways , Homeostasis
13.
J Gen Virol ; 87(Pt 9): 2539-2548, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16894192

ABSTRACT

The helper-independent bovine parvovirus (BPV) was studied to determine its effect on host embryonic bovine tracheal (EBTr) cells: whether the ultimate outcome of infection results in apoptotic cell death or cell death by necrosis. Infected cells were observed for changes marking apoptosis. Observations of alterations in nuclear morphology, membrane changes, apoptotic body formation, membrane phosphatidylserine inversions, caspase activation and cell DNA laddering in infected cells were not indicative of apoptosis. On the other hand, at the end of the virus replication cycle, infected cells released viral haemagglutinin and infectious virus particles, as would be expected from cell membrane failure. Moreover, the infected cells released lactate dehydrogenase (LDH), release of which is a marker of necrosis. LDH release into the cell medium correlated directly with viral m.o.i. and time post-infection. Furthermore, assessment of mitochondrial dehydrogenase activity was consistent with cell death by necrosis. Taken together, these findings indicate that cell death in BPV-infected EBTr cells is due to necrosis, as defined by infected-cell membrane failure and release of the cell contents into the extracellular environment.


Subject(s)
Parvovirus/pathogenicity , Trachea/pathology , Trachea/virology , Animals , Annexin A5 , Apoptosis , Caspases/metabolism , Cattle , Cell Line , Cell Nucleus/pathology , Cell Survival , Cytoplasm/pathology , DNA Fragmentation , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescent Dyes , Necrosis , Parvoviridae Infections/metabolism , Parvoviridae Infections/pathology , Parvoviridae Infections/virology , Trachea/embryology , Trachea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL