ABSTRACT
Protein synthesis is important and regulated by various mechanisms in the cell. Translation initiation in eukaryotes starts at the 5' cap and is the most complex of the three phases of mRNA translation. It requires methylation of the N7 position of the terminal guanosine (m7 G). The canonical capping occurs in the nucleus, however, cytoplasmic recapping has been discovered. It functions in switching mRNAs between translating and non-translating states, but the individual steps are difficult to dissect. We targeted cytoplasmic cap methylation as the ultimate step of cytoplasmic recapping. We present an N7G photocaged 5' cap that can be activated for cytoplasmic methylation by visible light. We report chemical and chemo-enzymatic synthesis of this 5' cap with 7-(diethylamino)-4-methyl-coumarin (DEACM) at the N7G and validate that it is not bound by translation initiation factor 4E (eIF4E). We demonstrate incorporation into mRNA, the release of unmethylated cap analog and enzymatic remethylation to functional cap 0 after irradiation at 450â nm. In cells, irradiation triggers translation of mRNAs with the N7G photocaged 5' cap via cytoplasmic cap methylation.
Subject(s)
Coumarins , Protein Biosynthesis , RNA, Messenger/metabolism , Cytoplasm/metabolism , Methylation , Coumarins/metabolism , LightABSTRACT
The 5' cap of mRNA plays a critical role in mRNA processing, quality control and turnover. Enzymatic availability of the 5' cap governs translation and could be a tool to investigate cell fate decisions and protein functions or develop protein replacement therapies. We have previously reported on the chemical synthesis of 5' cap analogues with photocleavable groups for this purpose. However, the synthesis is complex and post-synthetic enzymatic installation may make the technique more applicable to biological researchers. Common 5' cap analogues, like the cap 0, are commercially available and routinely used for inâ vitro transcription. Here, we report a facile enzymatic approach to attach photocleavable groups site-specifically to the N2 position of m7 G of the 5' cap. By expanding the substrate scope of the methyltransferase variant GlaTgs V34A and using synthetic co-substrate analogues, we could enzymatically photocage the 5' cap and recover it after irradiation.
Subject(s)
Methyltransferases , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methyltransferases/metabolismABSTRACT
S-Adenosylmethionine (SAM) is an enzyme cofactor involved in methylation, aminopropyl transfer, and radical reactions. This versatility renders SAM-dependent enzymes of great interest in biocatalysis. The usage of SAM analogues adds to this diversity. However, high cost and instability of the cofactor impedes the investigation and usage of these enzymes. While SAM regeneration protocols from the methyltransferase (MT) byproduct S-adenosylhomocysteine are available, aminopropyl transferases and radical SAM enzymes are not covered. Here, we report a set of efficient one-pot systems to supply or regenerate SAM and SAM analogues for all three enzyme classes. The systems' flexibility is showcased by the transfer of an ethyl group with a cobalamin-dependent radical SAM MT using S-adenosylethionine as a cofactor. This shows the potential of SAM (analogue) supply and regeneration for the application of diverse chemistry, as well as for mechanistic studies using cofactor analogues.
Subject(s)
Biomimetics , S-Adenosylmethionine , S-Adenosylmethionine/metabolism , Biocatalysis , Alkylation , Methylation , Methyltransferases/metabolismABSTRACT
The central dogma of molecular biology hinges on messenger RNA (mRNA), which presents a blueprint of the genetic information encoded in the DNA and serves as a template for translation into proteins. In addition to its fundamental importance in basic research, this class of biomolecules has recently become the first approved Covid vaccine, underscoring its utility in medical applications.Eukaryotic mRNA is heavily processed, including the 5' cap as the primary hallmark. This 5' cap protects mRNA from degradation by exoribonucleases but also interacts specifically with several proteins and enzymes to ensure mRNA turnover and processing, like splicing, export from the nucleus to the cytoplasm, and initiation of translation. The absence of a 5' cap leads to a strong immune response, and the methylation status contributes to distinguishing self from non-self RNA.Non-natural modifications of the 5' cap provide an avenue to label mRNAs and make them accessible to analyses, which is important to study their cellular localization, trafficking, and binding partners. They bear potential to engineer mRNAs, e.g., more stable or immunogenic mRNAs that are still translated, by impacting select interactions in a distinct manner. The modification of the 5' cap itself is powerful as it can be applied to make long mRNAs (â¼1000 nt, not directly accessible by solid-phase synthesis) by in vitro transcription.This Account describes our contribution to the field of chemo-enzymatic modification of mRNA at the 5' cap. Our approach relies on RNA methyltransferases (MTases) with promiscuous activity on analogues of their natural cosubstrate S-adenosyl-L-methionine (AdoMet). We will describe how RNA MTases in combination with non-natural cosubstrates provide access to site-specific modification of different positions of the 5' cap, namely, the N2 and N7 position of guanosine and the N6 position of adenosine as the transcription start nucleotide (TSN) and exemplify strategies to make long mRNAs with modified 5' caps.We will compare the chemical and enzymatic synthesis of the AdoMet analogues used for this purpose. We could overcome previous limitations in methionine adenosyltransferase (MAT) substrate scope by engineering variants (termed PC-MATs) with the ability to convert methionine analogues with benzylic and photocaging groups at the sulfonium ion.The final part of this Account will highlight applications of the modified mRNAs. Like in many chemo-enzymatic approaches, a versatile strategy is to install small functional groups enzymatically and use them as handles in subsequent bioorthogonal reactions. We showed fluorescent labeling of mRNAs via different types of click chemistry in vitro and in cells. In a second line of applications, we used the handles to make mRNAs amenable for analyses, most notably next-generation sequencing. In the case of extremely promiscuous enzymes, the direct installation of photo-cross-linking groups was successful also and provided a way to covalently bind protein-interaction partners. Finally, the non-natural modifications of mRNAs can also modulate the properties of mRNAs. Propargylation of Am as the transcription start nucleotide at its N6 position maintained the translation of mRNAs but increased their immunogenicity. The installation of photocaging groups provides a way to revert these effects and control interactions by light.
Subject(s)
RNA, Messenger , S-Adenosylmethionine , COVID-19 Vaccines , Humans , Methionine , Methyltransferases/genetics , Methyltransferases/metabolism , Nucleotides , RNA , RNA, Messenger/metabolism , S-Adenosylmethionine/chemistryABSTRACT
Post-transcriptional modifications play an important role in several processes, including translation, splicing, and RNA degradation in eukaryotic cells. To investigate the function of specific modifications it is of high interest to develop tools for sequence-specific RNA-targeting. This work focuses on two abundant modifications of eukaryotic mRNA, namely methylation of the guanine-N7 position of the 5'-cap and internal N6-methyladenosine (m6A). We describe the sequence-specific targeting of model RNA transcripts via RNA-binding proteins, such as nuclease-deficient RNA-targeting Cas9 (RCas9) and the Pumilio homology domain (PumHD) fused to two different effector enzymes, the dioxygenase FTO and the guanine-N7 methyltransferase Ecm1. With this tool, we were able to install and remove the methylation at the respective positions with high specificity.
Subject(s)
Adenosine , RNA , Adenosine/metabolism , Guanine , Methylation , Methyltransferases/chemistry , RNA/genetics , RNA/metabolismABSTRACT
Enzymatic modification of the 5'-cap is a versatile approach to modulate the properties of mRNAs. Transfer of methyl groups from S-adenosyl-l-methionine (AdoMet) or functional moieties from non-natural analogs by methyltransferases (MTases) allows for site-specific modifications at the cap. These modifications have been used to tune translation or control it in a temporal manner and even influence immunogenicity of mRNA. For quantification of the MTase-mediated cap modification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) provides the required sensitivity and accuracy. Here, we describe the complete workflow starting from in vitro transcription to produce mRNAs, via their enzymatic modification at the cap with natural or non-natural moieties to the quantification of these cap-modifications by LC-QqQ-MS.
Subject(s)
Methyltransferases , Tandem Mass Spectrometry , Chromatography, Liquid , Methionine/chemistry , Methyltransferases/chemistry , Methyltransferases/genetics , RNA, Messenger/chemistry , RNA, Messenger/geneticsABSTRACT
Modified nucleotides impact all aspects of eukaryotic mRNAs and contribute to regulation of gene expression at the transcriptional and translational level. At the 5' cap, adenosine as first transcribed nucleotide is often N6 -methyl-2'-O-methyl adenosine (m6 Am ). This modification is tissue dependent and reversible, pointing to a regulatory function. CAPAM was recently identified as methyltransferase responsible for m6 Am formation, however, the direct assignment of its target transcripts proves difficult. Antibodies do not discriminate between internal N6 -methyl adenosine (m6 A) and m6 Am . Here we present CAPturAM, an antibody-free chemical biology approach for direct enrichment and probing of physiological CAPAM-targets. We harness CAPAM's cosubstrate promiscuity to install propargyl groups on its targets. Subsequent functionalization with an affinity handle allows for their enrichment. Using wildtype and CAPAM-/- cells, we successfully applied CAPturAM to confirm or disprove CAPAM-targets, facilitating the verification and identification of CAPAM targets.
Subject(s)
Adenosine , Methyltransferases , Methylation , RNA, Messenger/metabolism , Methyltransferases/metabolism , Adenosine/metabolism , Nucleotides/metabolismABSTRACT
A major stage in the expression of genes is the translation of messenger RNA (mRNA), and the regulation of this process is essential for protein production in cells. How tightly controlled gene expression can be spatially and temporally, is particularly evident in polar cells and embryonic development. We need tools to dissect these complex processes, if we wish to understand the underlying links, especially the difficulties brought on by malfunction. External bioorthogonal triggers are very helpful in this area, if they let us precisely control where and when a process is started. Equipping nucleic acids with light-responsive groups has proven to be an effective approach to examine the dynamic regulatory route of mRNA translation in living cells. In this review, we present an overview of the most recent methods for optochemically controlling translation, focusing on cis-acting technologies.
Subject(s)
Eukaryota , Gene Expression Regulation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Eukaryota/genetics , Proteins/metabolism , Protein BiosynthesisABSTRACT
The 5' cap is a hallmark of eukaryotic mRNA involved in the initiation of translation. Its modification with a single photo-cleavable group can bring translation of mRNA under the control of light. However, UV irradiation causes cell stress and downregulation of translation. Furthermore, complex processes often involve timed expression of more than one gene. The approach would thus greatly benefit from the ability to photo-cleave by blue light and to control more than one mRNA at a time. We report the synthesis of a 5' cap modified with a 7-(diethylamino)coumarin (CouCap) and adapted conditions for in vitro transcription. Translation of the resulting CouCap-mRNA is muted in vitro and in mammalian cells, and can be initiated by irradiation with 450â nm. The native cap is restored and no non-natural residues nor sequence alterations remain in the mRNA. Multiplexing for two different mRNAs was achieved by combining cap analogs with coumarin- and ortho-nitrobenzyl-based photo-cleavable groups.
Subject(s)
Eukaryotic Initiation Factor-4E , Protein Biosynthesis , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-4E/metabolism , RNA Caps/metabolism , Mammals/metabolismABSTRACT
Messenger RNA (mRNA) shows great potential for medical applications, as recently demonstrated by the mRNA-based vaccines against the coronavirus. In addition, it has long been used for ectopic gene expression in cells and model organisms. While numerous methodologies are available for controlling gene expression at the level of transcription, approaches to control translation are scarce. Here we review strategies for direct light-mediated activation of mRNA translation via photocleavable groups and their potential to achieve spatial and temporal control of protein production.
ABSTRACT
Methyltransferases (MTases) have become an important tool for site-specific alkylation and biomolecular labelling. In biocatalytic cascades with methionine adenosyltransferases (MATs), transfer of functional moieties has been realized starting from methionine analogues and ATP. However, the widespread use of S-adenosyl-l-methionine (AdoMet) and the abundance of MTases accepting sulfonium centre modifications limit selective modification in mixtures. AdoMet analogues with additional modifications at the nucleoside moiety bear potential for acceptance by specific MTases. Here, we explored the generation of double-modified AdoMets by an engineered Methanocaldococcus jannaschii MAT (PC-MjMAT), using 19 ATP analogues in combination with two methionine analogues. This substrate screening was extended to cascade reactions and to MTase competition assays. Our results show that MTase targeting selectivity can be improved by using bulky substituents at the N6 of adenine. The facile access to >10 new AdoMet analogues provides the groundwork for developing MAT-MTase cascades for orthogonal biomolecular labelling.
Subject(s)
Methyltransferases , S-Adenosylmethionine , Methyltransferases/metabolism , S-Adenosylmethionine/metabolism , Methionine , Alkylation , Racemethionine , Adenosine TriphosphateABSTRACT
Methylation and demethylation of DNA, RNA and proteins constitutes a major regulatory mechanism in epigenetic processes. Investigations would benefit from the ability to install photo-cleavable groups at methyltransferase target sites that block interactions with reader proteins until removed by non-damaging light in the visible spectrum. Engineered methionine adenosyltransferases (MATs) have been exploited in cascade reactions with methyltransferases (MTases) to modify biomolecules with non-natural groups, including first evidence for accepting photo-cleavable groups. We show that an engineered MAT from Methanocaldococcus jannaschii (PC-MjMAT) is 308-fold more efficient at converting ortho-nitrobenzyl-(ONB)-homocysteine than the wildtype enzyme. PC-MjMAT is active over a broad range of temperatures and compatible with MTases from mesophilic organisms. We solved the crystal structures of wildtype and PC-MjMAT in complex with AdoONB and a red-shifted derivative thereof. These structures reveal that aromatic stacking interactions within the ligands are key to accommodating the photocaging groups in PC-MjMAT. The enlargement of the binding pocket eliminates steric clashes to enable AdoMet analogue binding. Importantly, PC-MjMAT exhibits remarkable activity on methionine analogues with red-shifted ONB-derivatives enabling photo-deprotection of modified DNA by visible light.
Subject(s)
DNA/chemistry , Light , Methionine Adenosyltransferase/chemistry , RNA/chemistry , DNA/genetics , DNA/metabolism , Methanocaldococcus/enzymology , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Molecular Structure , Photochemical Processes , Protein Engineering , RNA/genetics , RNA/metabolismABSTRACT
N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA and associated with numerous cellular processes in health and disease. Up- and down-regulation of its "writer" or "eraser" proteins alter the global m6A level; however, modifying distinct m6A sites has remained elusive. We genetically fused the dioxygenase FTO responsible for m6A demethylation to RCas9 as an RNA-targeting module. The resulting RCas9-FTO retained demethylation activity and bound to RNA in a sequence-specific manner depending on the sgRNA and PAMmer. Using SCARLET analysis, we quantified the m6A level at a specific site and analyzed the effect of the PAM-to-m6A distance on activity. Sequence-specific demethylation by RCas9-FTO was tested on different RNA combinations and showed up to 15-fold sequence preference for target RNA compared to off-target RNA. Taken together, RCas9-FTO represents a new tool for sequence-specific demethylation of m6A in RNA that can be readily adapted to any given RNA sequence and opens the door to studying the function of distinct m6A sites.
Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , CRISPR-Associated Protein 9/metabolism , Demethylation , RNA/metabolism , Electrophoretic Mobility Shift Assay , Recombinant Fusion Proteins/metabolismABSTRACT
Supramolecular nanogels are an emerging class of polymer nanocarriers for intracellular delivery, due to their straightforward preparation, biocompatibility, and capability to spontaneously encapsulate biologically active components such as DNA. A completely biodegradable three-component cationic supramolecular nanogel was designed exploiting the multivalent host-guest interaction of cyclodextrin and adamantane attached to a polypeptide backbone. While cyclodextrin was conjugated to linear poly-L-lysine, adamantane was grafted to linear as well as star shaped poly-L-lysine. Size control of nanogels was obtained with the increase in the length of the host and guest polymer. Moreover, smaller nanogels were obtained using the star shaped polymers because of the compact nature of star polymers compared to linear polymers. Nanogels were loaded with anionic model cargoes, pyranine and carboxyfluorescein, and their enzyme responsive release was studied using protease trypsin. Confocal microscopy revealed successful transfection of mammalian HeLa cells and intracellular release of pyranine and plasmid DNA, as quantified using a luciferase assay, showing that supramolecular polypeptide nanogels have significant potential in gene therapy applications.
Subject(s)
Peptides , Polymers , Animals , DNA , HeLa Cells , Humans , NanogelsABSTRACT
Small nuclear RNAs (snRNAs) are core spliceosome components and mediate pre-mRNA splicing. Here we show that snRNAs contain a regulated and reversible nucleotide modification causing them to exist as two different methyl isoforms, m1 and m2, reflecting the methylation state of the adenosine adjacent to the snRNA cap. We find that snRNA biogenesis involves the formation of an initial m1 isoform with a single-methylated adenosine (2'-O-methyladenosine, Am), which is then converted to a dimethylated m2 isoform (N6,2'-O-dimethyladenosine, m6Am). The relative m1 and m2 isoform levels are determined by the RNA demethylase FTO, which selectively demethylates the m2 isoform. We show FTO is inhibited by the oncometabolite D-2-hydroxyglutarate, resulting in increased m2-snRNA levels. Furthermore, cells that exhibit high m2-snRNA levels show altered patterns of alternative splicing. Together, these data reveal that FTO controls a previously unknown central step of snRNA processing involving reversible methylation, and suggest that epitranscriptomic information in snRNA may influence mRNA splicing.
Subject(s)
Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/physiology , RNA, Small Nuclear/biosynthesis , Adenosine/biosynthesis , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alternative Splicing , Animals , HEK293 Cells , Humans , Male , Methylation , Mice , Mice, Knockout , RNA Precursors/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Nuclear/metabolismABSTRACT
Enzyme-mediated methylation is a very important reaction in nature, yielding a wide range of modified natural products, diversifying small molecules and fine-tuning the activity of biomacromolecules. The field has attracted much attention over the recent years and interesting applications of the dedicated enzymes in biocatalysis and biomolecular labelling have emerged. In this review article, we summarise the concepts and recent advances in developing (chemo)-enzymatic cascades for selective methylation, alkylation and photocaging as tools to study biological methylation and as biotransformations to generate site-specifically alkylated products.
Subject(s)
S-AdenosylmethionineABSTRACT
Post-transcriptional regulation of gene expression occurs by multiple mechanisms, including subcellular localization of mRNA and alteration of the poly(A) tail length. These mechanisms play crucial roles in the dynamics of cell polarization and embryonic development. Furthermore, mRNAs are emerging therapeutics and chemical alterations to increase their translational efficiency are highly sought after. We show that yeast poly(A) polymerase can be used to install multiple azido-modified adenosine nucleotides to luciferase and eGFP-mRNAs. These mRNAs can be efficiently reacted in a bioorthogonal click reaction with fluorescent reporters without degradation and without sequence alterations in their coding or untranslated regions. Importantly, the modifications in the poly(A) tail impact positively on the translational efficiency of reporter-mRNAs in vitro and in cells. Therefore, covalent fluorescent labeling at the poly(A) tail presents a new way to increase the amount of reporter protein from exogenous mRNA and to label genetically unaltered and translationally active mRNAs.
Subject(s)
Cell Survival , Fluorescence , Poly A/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Staining and Labeling/methods , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , HeLa Cells , Humans , Poly A/chemistry , RNA, Messenger/chemistryABSTRACT
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Subject(s)
DNA/chemistry , RNA/chemistry , Staining and LabelingABSTRACT
Eukaryotic mRNAs are emerging modalities for protein replacement therapy and vaccination. Their 5' cap is important for mRNA translation and immune response and can be naturally methylated at different positions by S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). We report on the cosubstrate scope of the MTase CAPAM responsible for methylation at the N6 -position of adenosine start nucleotides using synthetic AdoMet analogs. The chemo-enzymatic propargylation enabled production of site-specifically modified reporter-mRNAs. These cap-propargylated mRNAs were efficiently translated and showed ≈3-fold increased immune response in human cells. The same effects were observed when the receptor binding domain (RBD) of SARS-CoV-2-a currently tested epitope for mRNA vaccination-was used. Site-specific chemo-enzymatic modification of eukaryotic mRNA may thus be a suitable strategy to modulate translation and immune response of mRNAs for future therapeutic applications.
Subject(s)
RNA Caps/immunology , RNA, Messenger/immunology , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Genes, Reporter , HEK293 Cells , Humans , Mass Spectrometry , Methylation , Methyltransferases/metabolism , Protein Biosynthesis , Protein Domains/genetics , Protein Domains/immunology , RNA Caps/analysis , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/immunology , S-Adenosylmethionine/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
The mRNA modification N6 -methyladenosine (m6 A) is associated with multiple roles in cell function and disease. The methyltransferases METTL3-METTL14 and METTL16 act as "writers" for different target transcripts and sequence motifs. The modification is perceived by dedicated "reader" and "eraser" proteins, but not by polymerases. We report that METTL3-14 shows remarkable cosubstrate promiscuity, enabling sequence-specific internal labeling of RNA without additional guide RNAs. The transfer of ortho-nitrobenzyl and 6-nitropiperonyl groups allowed enzymatic photocaging of RNA in the consensus motif, which impaired polymerase-catalyzed primer extension in a reversible manner. METTL16 was less promiscuous but suitable for chemo-enzymatic labeling using different types of click chemistry. Since both enzymes act on distinct sequence motifs, their combination allowed orthogonal chemo-enzymatic modification of different sites in a single RNA.