Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Publication year range
1.
Nature ; 586(7831): 735-740, 2020 10.
Article in English | MEDLINE | ID: mdl-32879487

ABSTRACT

Innate immunity is associated with Alzheimer's disease1, but the influence of immune activation on the production of amyloid-ß is unknown2,3. Here we identify interferon-induced transmembrane protein 3 (IFITM3) as a γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-ß. Inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-ß. The expression of IFITM3 is increased with ageing and in mouse models that express familial Alzheimer's disease genes. Furthermore, knockout of IFITM3 reduces γ-secretase activity and the formation of amyloid plaques in a transgenic mouse model (5xFAD) of early amyloid deposition. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer's disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer's disease. These findings reveal a mechanism in which γ-secretase is modulated by neuroinflammation via IFITM3 and the risk of Alzheimer's disease is thereby increased.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Immunity, Innate , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Age of Onset , Aged, 80 and over , Aging/genetics , Aging/immunology , Aging/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/metabolism , Catalytic Domain , Disease Models, Animal , Female , HEK293 Cells , Humans , Inflammation , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/metabolism , RNA-Binding Proteins/genetics , Risk , Up-Regulation
2.
Alzheimers Dement ; 20(1): 47-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740921

ABSTRACT

INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.


Subject(s)
Alzheimer Disease , Humans , Female , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cross-Sectional Studies , Sex Characteristics , Positron-Emission Tomography , Mutation/genetics , Biomarkers
3.
Alzheimers Dement ; 20(6): 4351-4365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666355

ABSTRACT

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.


Subject(s)
Alzheimer Disease , Lewy Bodies , alpha-Synuclein , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , Female , Male , Middle Aged , Lewy Bodies/pathology , Aged , Mutation , Brain/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Disease Progression
4.
Alzheimers Dement ; 19(12): 5333-5342, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37177856

ABSTRACT

INTRODUCTION: Recent genome-wide association studies identified new dementia-associated variants. We assessed the performance of updated polygenic risk scores (PRSs) using these variants in an independent cohort. METHODS: We used Cox models and area under the curve (AUC) to validate new PRSs (PRS-83SNP, PRS-SBayesR, and PRS-CS) compared with an older PRS-23SNP in 12,031 initially-healthy participants ≥70 years of age. Dementia was rigorously adjudicated according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. RESULTS: PRS-83SNP, PRS-SBayesR, and PRS-CS were associated with incident dementia, with fully adjusted (including apolipoprotein E [APOE] ε4) hazard ratios per standard deviation (SD) of 1.35 (1.23-1.47), 1.37 (1.25-1.50), and 1.42 (1.30-1.56), respectively. The AUC of a model containing conventional/non-genetic factors and APOE was 74.7%. This was improved to 75.7% (p = 0.007), 76% (p = 0.004), and 76.1% (p = 0.003) with addition of PRS-83SNP, PRS-SBayesR, and PRS-CS, respectively. The PRS-23SNP did not improve AUC (74.7%, p = 0.95). CONCLUSION: New PRSs for dementia significantly improve risk-prediction performance, but still account for less risk than APOE genotype overall.


Subject(s)
Dementia , Genetic Risk Score , Humans , Prospective Studies , Genome-Wide Association Study , Apolipoproteins E/genetics , Dementia/genetics , Risk Factors
5.
Alzheimers Dement ; 19(9): 3835-3847, 2023 09.
Article in English | MEDLINE | ID: mdl-36951251

ABSTRACT

INTRODUCTION: Genetic associations with Alzheimer's disease (AD) age at onset (AAO) could reveal genetic variants with therapeutic applications. We present a large Colombian kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAO genetic associations. METHODS: A genetic association study was conducted to examine ADAD AAO in 340 individuals with the PSEN1 E280A mutation via TOPMed array imputation. Replication was assessed in two ADAD cohorts, one sporadic early-onset AD study and four late-onset AD studies. RESULTS: 13 variants had p<1×10-7 or p<1×10-5 with replication including three independent loci with candidate associations with clusterin including near CLU. Other suggestive associations were identified in or near HS3ST1, HSPG2, ACE, LRP1B, TSPAN10, and TSPAN14. DISCUSSION: Variants with suggestive associations with AAO were associated with biological processes including clusterin, heparin sulfate, and amyloid processing. The detection of these effects in the presence of a strong mutation for ADAD reinforces their potentially impactful role.


Subject(s)
Alzheimer Disease , Clusterin , Humans , Clusterin/genetics , Colombia , Alzheimer Disease/diagnosis , Mutation/genetics , Amyloid , Presenilin-1/genetics , Age of Onset
6.
Am J Hum Genet ; 105(4): 822-835, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585107

ABSTRACT

To analyze family-based whole-genome sequence (WGS) data for complex traits, we developed a rare variant (RV) non-parametric linkage (NPL) analysis method, which has advantages over association methods. The RV-NPL differs from the NPL in that RVs are analyzed, and allele sharing among affected relative-pairs is estimated only for minor alleles. Analyzing families can increase power because causal variants with familial aggregation usually have larger effect sizes than those underlying sporadic diseases. Differing from association analysis, for NPL only affected individuals are analyzed, which can increase power, since unaffected family members can be susceptibility variant carriers. RV-NPL is robust to population substructure and admixture, inclusion of nonpathogenic variants, as well as allelic and locus heterogeneity and can readily be applied outside of coding regions. In contrast to analyzing common variants using NPL, where loci localize to large genomic regions (e.g., >50 Mb), mapped regions are well defined for RV-NPL. Using simulation studies, we demonstrate that RV-NPL is substantially more powerful than applying traditional NPL methods to analyze RVs. The RV-NPL was applied to analyze 107 late-onset Alzheimer disease (LOAD) pedigrees of Caribbean Hispanic and European ancestry with WGS data, and statistically significant linkage (LOD ≥ 3.8) was found with RVs in PSMF1 and PTPN21 which have been shown to be involved in LOAD etiology. Additionally, nominally significant linkage was observed with RVs in ABCA7, ACE, EPHA1, and SORL1, genes that were previously reported to be associated with LOAD. RV-NPL is an ideal method to elucidate the genetic etiology of complex familial diseases.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genetic Linkage , Whole Genome Sequencing , Female , Humans , Male , Pedigree
7.
Acta Neuropathol ; 143(1): 33-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34719765

ABSTRACT

Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.


Subject(s)
Homeodomain Proteins/genetics , Tauopathies/genetics , Tauopathies/pathology , Tumor Suppressor Proteins/genetics , Aged , Aged, 80 and over , Aging/pathology , Animals , Cohort Studies , Drosophila , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
8.
Mol Psychiatry ; 25(8): 1859-1875, 2020 08.
Article in English | MEDLINE | ID: mdl-30108311

ABSTRACT

The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 × 10-7), an immunoglobulin gene whose antibodies interact with ß-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 × 10-7), and a zinc-finger protein ZNF655 (gene-based p = 5.0 × 10-6). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/immunology , Exome Sequencing , Gene Expression Regulation/genetics , Immunity/genetics , Transcription, Genetic/genetics , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/immunology , Apolipoproteins E/genetics , Female , Haplotypes/genetics , Humans , Immunoglobulin G , Kruppel-Like Transcription Factors/genetics , Male , Polymorphism, Genetic/genetics , RNA, Long Noncoding/genetics
10.
Am J Hum Genet ; 100(2): 193-204, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28065470

ABSTRACT

Whole-genome and exome sequence data can be cost-effectively generated for the detection of rare-variant (RV) associations in families. Causal variants that aggregate in families usually have larger effect sizes than those found in sporadic cases, so family-based designs can be a more powerful approach than population-based designs. Moreover, some family-based designs are robust to confounding due to population admixture or substructure. We developed a RV extension of the generalized disequilibrium test (GDT) to analyze sequence data obtained from nuclear and extended families. The GDT utilizes genotype differences of all discordant relative pairs to assess associations within a family, and the RV extension combines the single-variant GDT statistic over a genomic region of interest. The RV-GDT has increased power by efficiently incorporating information beyond first-degree relatives and allows for the inclusion of covariates. Using simulated genetic data, we demonstrated that the RV-GDT method has well-controlled type I error rates, even when applied to admixed populations and populations with substructure. It is more powerful than existing family-based RV association methods, particularly for the analysis of extended pedigrees and pedigrees with missing data. We analyzed whole-genome sequence data from families affected by Alzheimer disease to illustrate the application of the RV-GDT. Given the capability of the RV-GDT to adequately control for population admixture or substructure and analyze pedigrees with missing genotype data and its superior power over other family-based methods, it is an effective tool for elucidating the involvement of RVs in the etiology of complex traits.


Subject(s)
Alzheimer Disease/genetics , Genetic Variation , Linkage Disequilibrium , Sequence Analysis, DNA/methods , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Axin Protein/genetics , Axin Protein/metabolism , Computer Simulation , Databases, Genetic , Female , Genotype , Haplotypes , Humans , Male , Models, Genetic , Pedigree , Phenotype
11.
Hum Mol Genet ; 26(6): 1133-1145, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28158451

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , PTEN Phosphohydrolase/genetics , Proteins/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein , Cell Line , Cell Survival , Frontotemporal Dementia/pathology , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA/genetics
12.
Bioinformatics ; 34(16): 2724-2731, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29590295

ABSTRACT

Motivation: Annotation of genomic variants is an increasingly important and complex part of the analysis of sequence-based genomic analyses. Computational predictions of variant function are routinely incorporated into gene-based analyses of rare-variants, though to date most studies use limited information for assessing variant function that is often agnostic of the disease being studied. Results: In this work, we outline an annotation process motivated by the Alzheimer's Disease Sequencing Project, illustrate the impact of including tissue-specific transcript sets and sources of gene regulatory information and assess the potential impact of changing genomic builds on the annotation process. While these factors only impact a small proportion of total variant annotations (∼5%), they influence the potential analysis of a large fraction of genes (∼25%). Availability and implementation: Individual variant annotations are available via the NIAGADS GenomicsDB, at https://www.niagads.org/genomics/ tools-and-software/databases/genomics-database. Annotations are also available for bulk download at https://www.niagads.org/datasets. Annotation processing software is available at http://www.icompbio.net/resources/software-and-downloads/. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Alzheimer Disease/genetics , Genetic Predisposition to Disease , Molecular Sequence Annotation/methods , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Software , Databases, Genetic , Genome , Genomics , Humans
14.
Alzheimer Dis Assoc Disord ; 28(2): 190-3, 2014.
Article in English | MEDLINE | ID: mdl-22892647

ABSTRACT

Frontotemporal lobar degeneration (FTLD) is a genetically heterogenous syndrome and has been associated most recently with a hexanucleotide repeat expansion within the C9ORF72 gene. Pathogenic TDP-43 gene (TARDBP) mutations have been identified in amyotrophic lateral sclerosis, but the role of TARDBP mutations in FTLD is more contradictory. To investigate the role of TARDBP mutations in a clinical series of Finnish FTLD patients, we sequenced TARDBP exons 1 to 6 in 77 FTLD patients. No evident pathogenic mutations were found. We identified a novel heterozygous c.876_878delCAG sequence variant in 2 related patients with behavioral variant frontotemporal dementia without amyotrophic lateral sclerosis. The variant is predicted to cause an amino acid deletion of serine at position 292 (p.Ser292del). However, p.Ser292del was also found in 1 healthy middle-aged control. Interestingly, both patients carried the C9ORF72 expansion. Therefore, the TARDBP variant p.Ser292del might be considered a rare polymorphism and the C9ORF72 repeat expansion the actual disease-causing mutation in the family. Our results suggest that TARDBP mutations are a rare cause of FTLD. However, the interaction of several genetic factors needs to be taken into account when investigating neurodegenerative diseases.


Subject(s)
DNA-Binding Proteins/genetics , Frontotemporal Dementia/genetics , Proteins/genetics , Siblings , Adult , Aged , Aged, 80 and over , C9orf72 Protein , Case-Control Studies , Cohort Studies , DNA Repeat Expansion , Exons , Female , Genetic Variation , Heterozygote , Humans , Male , Middle Aged , Sequence Analysis, DNA
15.
Mol Neurodegener ; 19(1): 43, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812061

ABSTRACT

A ~ 1 Mb inversion polymorphism exists within the 17q21.31 locus of the human genome as direct (H1) and inverted (H2) haplotype clades. This inversion region demonstrates high linkage disequilibrium, but the frequency of each haplotype differs across ancestries. While the H1 haplotype exists in all populations and shows a normal pattern of genetic variability and recombination, the H2 haplotype is enriched in European ancestry populations, is less frequent in African ancestry populations, and nearly absent in East Asian ancestry populations. H1 is a known risk factor for several neurodegenerative diseases, and has been associated with many other traits, suggesting its importance in cellular phenotypes of the brain and entire body. Conversely, H2 is protective for these diseases, but is associated with predisposition to recurrent microdeletion syndromes and neurodevelopmental disorders such as autism. Many single nucleotide variants and copy number variants define H1/H2 haplotypes and sub-haplotypes, but identifying the causal variant(s) for specific diseases and phenotypes is complex due to the extended linkage equilibrium. In this review, we assess the current knowledge of this inversion region regarding genomic structure, gene expression, cellular phenotypes, and disease association. We discuss recent discoveries and challenges, evaluate gaps in knowledge, and highlight the importance of understanding the effect of the 17q21.31 haplotypes to promote advances in precision medicine and drug discovery for several diseases.


Subject(s)
Haplotypes , Neurodegenerative Diseases , tau Proteins , Humans , Haplotypes/genetics , Neurodegenerative Diseases/genetics , tau Proteins/genetics , Genetic Predisposition to Disease/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics
16.
medRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38903124

ABSTRACT

Importance: By integrating genetic and clinical risk factors into genomic-informed dementia risk reports, healthcare providers can offer patients detailed risk profiles to facilitate understanding of individual risk and support the implementation of personalized strategies for promoting brain health. Objective: To develop a genomic-informed risk assessment composed of family history, genetic, and clinical risk factors and, in turn, evaluate how the risk assessment predicted incident dementia. Design: This longitudinal study included data from two clinical case-control cohorts with an average of 6.6 visits. Secondary analyses were conducted from July 2023 - March 2024. Setting: Data were previously collected across multiple US locations from 1994 to 2023. Participants: Older adults aged 55+ with whole-genome sequencing and dementia-free at baseline. Exposures: An additive score comprising the modified Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (mCAIDE), family history of dementia, APOE genotype, and an AD polygenic risk score. Main Outcomes and Measures: The risk of progression to all-cause dementia was evaluated using Cox-proportional hazard models (hazard ratios with 95% confidence intervals [OR 9%CI]). Results: A total of 3,429 older adults were included (aged 75 ± 7 years; 59% female; 75% non-Latino White, 15% Black, 5.2% Latino, 3.6% other, and 0.4% Asian; 27% MCI), with 751 participants progressing to dementia. The most common high-risk indicator was a family history of dementia (56%), followed by APOE*ε4 genotype (36%), high mCAIDE score (34%), and high AD-PRS (11%). Most participants had at least one high-risk indicator, with 39% having one, 32% two, 9.8% three, and 1% four. The presence of 1, 2, 3, or 4 risk indicators was associated with a doubling (HR = 1.72, CI: 1.34-2.22, p = 2.5e-05), tripling (HR = 3.09, CI: 2.41-3.95, p = 4.4e-19), quadrupling (HR = 4.46, CI: 3.34-5.94, p = 2.2e-24), and a twelvefold increase (HR = 12.15, CI: 7.33-20.14, p = 3.2e-22) in dementia risk. Conclusion & Relevance: We found that most participants in memory and aging clinics had at least one high-risk indicator for dementia. Furthermore, we observed a dose-response relationship where a greater number of risk indicators was associated with an increased risk of incident dementia.

17.
medRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746455

ABSTRACT

Introduction: Evaluating the generalizability of dementia risk scores, primarily developed in non-Latinx White (NLW) participants, and interactions with genetic risk factors in diverse populations is crucial for addressing health disparities. Methods: We analyzed the association of the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) and modified CAIDE (mCAIDE) scores with dementia risk using logistic regression models stratified by race/ethnicity in NACC and ADNI, and assessed their interaction with APOE . Results: Higher CAIDE scores were associated with an increased risk of dementia in Asian, Latinx, and NLW participants but not in Black participants. In contrast, higher mCAIDE scores were also associated with an increased risk of dementia in Black participants. Unfavorable mCAIDE risk profiles exacerbated the APOE *ε4 risk effect and attenuated the APOE *ε2 protective effect. Discussion: Our findings underscore the importance of evaluating the validity of dementia risk scores in diverse populations for their use in personalized medicine approaches to promote brain health.

18.
medRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37961373

ABSTRACT

Background: Prior studies using the ADSP data examined variants within presenilin-2 ( PSEN2 ), presenilin-1 ( PSEN1 ), and amyloid precursor protein ( APP ) genes. However, previously-reported clinically-relevant variants and other predicted damaging missense (DM) variants have not been characterized in a newer release of the Alzheimer's Disease Sequencing Project (ADSP). Objective: To characterize previously-reported clinically-relevant variants and DM variants in PSEN2, PSEN1, APP within the participants from the ADSP. Methods: We identified rare variants (MAF <1%) previously-reported in PSEN2 , PSEN1, and APP in the available ADSP sample of 14,641 individuals with whole genome sequencing and 16,849 individuals with whole exome sequencing available for research-use (N total = 31,490). We additionally curated variants in these three genes from ClinVar, OMIM, and Alzforum and report carriers of variants in clinical databases as well as predicted DM variants in these genes. Results: We detected 31 previously-reported clinically-relevant variants with alternate alleles observed within the ADSP: 4 variants in PSEN2 , 25 in PSEN1 , and 2 in APP . The overall variant carrier rate for the 31 clinically-relevant variants in the ADSP was 0.3%. We observed that 79.5% of the variant carriers were cases compared to 3.9% were controls. In those with AD, the mean age of onset of AD among carriers of these clinically-relevant variants was 19.6 ± 1.4 years earlier compared with non-carriers (p-value=7.8×10 -57 ). Conclusion: A small proportion of individuals in the ADSP are carriers of a previously-reported clinically-relevant variant allele for AD and these participants have significantly earlier age of AD onset compared to non-carriers.

19.
medRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260583

ABSTRACT

Background: To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods: We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings: We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aß42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation: Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding: Proteomic data generation was supported by NIH: RF1AG044546.

20.
Hum Mol Genet ; 20(5): 867-79, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21138942

ABSTRACT

Mutations in PTEN-induced kinase 1 (PINK1) cause early onset autosomal recessive Parkinson's disease (PD). PINK1 is a 63 kDa protein kinase, which exerts a neuroprotective function and is known to localize to mitochondria. Upon entry into the organelle, PINK1 is cleaved to produce a ∼53 kDa protein (ΔN-PINK1). In this paper, we show that PINK1 is cleaved between amino acids Ala-103 and Phe-104 to generate ΔN-PINK1. We demonstrate that a reduced ability to cleave PINK1, and the consequent accumulation of full-length protein, results in mitochondrial abnormalities reminiscent of those observed in PINK1 knockout cells, including disruption of the mitochondrial network and a reduction in mitochondrial mass. Notably, we assessed three N-terminal PD-associated PINK1 mutations located close to the cleavage site and, while these do not prevent PINK1 cleavage, they alter the ratio of full-length to ΔN-PINK1 protein in cells, resulting in an altered mitochondrial phenotype. Finally, we show that PINK1 interacts with the mitochondrial protease presenilin-associated rhomboid-like protein (PARL) and that loss of PARL results in aberrant PINK1 cleavage in mammalian cells. These combined results suggest that PINK1 cleavage is important for basal mitochondrial health and that PARL cleaves PINK1 to produce the ΔN-PINK1 fragment.


Subject(s)
Metalloproteases/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , Amino Acid Sequence , Cell Line , Humans , Metalloproteases/genetics , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Molecular Sequence Data , Mutation , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinsonian Disorders , Protein Binding , Protein Kinases/genetics , Protein Processing, Post-Translational , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL