Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30381484

ABSTRACT

Influenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting the influenza virus hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. We used an integrated approach combining viral passaging, deep sequencing, and protein structural analyses to define escape mutations and mechanisms of neutralization escape in vitro for the F10 sBnAb. IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase (NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) are away from the F10 epitope but may indirectly impact influenza virus receptor binding, endosomal fusion, or budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, affects the active site of NA, highlighting the importance of the balance between HA and NA function for viral survival. Thus, whole-genome population sequencing enables the identification of viral resistance mutations responding to antibody-induced selective pressure.IMPORTANCE Influenza A virus is a public health threat for which currently available vaccines are not always effective. Broadly neutralizing antibodies that bind to the highly conserved stem region of the influenza virus hemagglutinin (HA) can neutralize many influenza virus strains. To understand how influenza virus can become resistant or escape such antibodies, we propagated influenza A virus in vitro with escalating concentrations of antibody and analyzed viral populations by whole-genome sequencing. We identified HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus function.


Subject(s)
Drug Resistance, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Mutation , Neuraminidase/genetics , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Influenza Vaccines , Madin Darby Canine Kidney Cells , Models, Molecular , Neuraminidase/chemistry , Neutralization Tests , Reverse Genetics , Sequence Analysis, RNA , Viral Proteins/chemistry , Viral Proteins/genetics
2.
J Virol ; 91(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-27974561

ABSTRACT

Intrahost and interhost assessments of viral diversity are often treated as measures of separate and distinct evolutionary processes, with numerous investigations reporting seemingly incompatible results between the two. For example, in human cytomegalovirus, the nucleotide diversity estimates are 10-fold higher for interhost data, while the number of segregating (i.e., polymorphic) sites is 6-fold lower. These results have been interpreted as demonstrating that sampled intrahost variants are strongly deleterious. In reality, however, these observations are fully consistent with standard population genetic expectations. Here, we analyze published intra- and interhost data sets within this framework, utilizing statistical inference tools to quantify the fitness effects of segregating mutations. Further, we utilize population level simulations to clarify expectations under common evolutionary models. Contrary to common claims in the literature, these results suggest that most observed polymorphisms are likely nearly neutral with regard to fitness and that standard population genetic models in fact well predict observed levels of both intra- and interhost variability. IMPORTANCE With the increasing number of evolutionary virology studies examining both intrahost and interhost patterns of genomic variation, a number of seemingly incompatible results have emerged, revolving around the far greater level of observed intrahost than interhost variation. This has led many authors to suggest that the great majority of sampled within-host polymorphisms are strongly deleterious. Here, we demonstrate that there is in fact no incompatibility of these results and, indeed, that the vast majority of sampled within-host variation is likely neutral. These results thus represent a major shift in the current view of observed viral variation.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/genetics , Alleles , Evolution, Molecular , Gene Frequency , Genes, Viral , Genetic Fitness , Humans , Models, Genetic , Phylogeny , Polymorphism, Genetic
3.
Proc Natl Acad Sci U S A ; 112(30): E4120-8, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26150505

ABSTRACT

Human cytomegalovirus (HCMV) exhibits surprisingly high genomic diversity during natural infection although little is known about the limits or patterns of HCMV diversity among humans. To address this deficiency, we analyzed genomic diversity among congenitally infected infants. We show that there is an upper limit to HCMV genomic diversity in these patient samples, with ∼ 25% of the genome being devoid of polymorphisms. These low diversity regions were distributed across 26 loci that were preferentially located in DNA-processing genes. Furthermore, by developing, to our knowledge, the first genome-wide mutation and recombination rate maps for HCMV, we show that genomic diversity is positively correlated with these two rates. In contrast, median levels of viral genomic diversity did not vary between putatively single or mixed strain infections. We also provide evidence that HCMV populations isolated from vascular compartments of hosts from different continents are genetically similar and that polymorphisms in glycoproteins and regulatory proteins are enriched in these viral populations. This analysis provides the most highly detailed map of HCMV genomic diversity in human hosts to date and informs our understanding of the distribution of HCMV genomic diversity within human hosts.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/genetics , Genetic Variation , Genome, Viral , Cluster Analysis , Cytomegalovirus/isolation & purification , Evolution, Molecular , Gene Expression Regulation , Genes, Viral , Genomics , Glycoproteins/genetics , Humans , Infant , Infant, Newborn , Mutation , Polymorphism, Genetic , Recombination, Genetic , Sequence Analysis, DNA
4.
Mol Ecol ; 26(7): 1980-1990, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27988973

ABSTRACT

Given the strong selective pressures often faced by populations when colonizing a novel habitat, the level of variation present on which selection may act is an important indicator of adaptive potential. While often discussed in an ecological context, this notion is also highly relevant in our clinical understanding of viral infection, in which the novel habitat is a new host. Thus, quantifying the factors determining levels of variation is of considerable importance for the design of improved treatment strategies. Here, we focus on such a quantification of human cytomegalovirus (HCMV) - a virus which can be transmitted across the placenta, resulting in foetal infection that can potentially cause severe disease in multiple organs. Recent studies using genomewide sequencing data have demonstrated that viral populations in some congenitally infected infants diverge rapidly over time and between tissue compartments within individuals, while in other infants, the populations remain highly stable. Here, we investigate the underlying causes of these extreme differences in observed intrahost levels of variation by estimating the underlying demographic histories of infection. Importantly, reinfection (i.e. population admixture) appears to be an important, and previously unappreciated, player. We highlight illustrative examples likely to represent a single-population transmission from a mother during pregnancy and multiple-population transmissions during pregnancy and after birth.


Subject(s)
Cytomegalovirus Infections/congenital , Cytomegalovirus/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population , Cytomegalovirus Infections/virology , DNA, Viral/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Models, Genetic , Pregnancy , Sequence Analysis, DNA
5.
PLoS Genet ; 10(2): e1004185, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24586206

ABSTRACT

The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence and absence of oseltamivir (an inhibitor of neuraminidase) collected at thirteen time points. Results reveal a striking consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the presence of drug treatment. Importantly, these approaches re-identify the known oseltamivir resistance site, successfully validating the approaches used. Enticingly, a number of previously unknown variants have also been identified as being positively selected. Results are interpreted in the light of Fisher's Geometric Model, allowing for a quantification of the increased distance to optimum exerted by the presence of drug, and theoretical predictions regarding the distribution of beneficial fitness effects of contending mutations are empirically tested. Further, given the fit to expectations of the Geometric Model, results suggest the ability to predict certain aspects of viral evolution in response to changing host environments and novel selective pressures.


Subject(s)
Drug Resistance, Viral/genetics , Genetics, Population , Influenza A Virus, H1N1 Subtype/genetics , Selection, Genetic , Bayes Theorem , Genetic Drift , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/genetics , Influenza, Human/virology , Mutation , Oseltamivir/pharmacology
6.
Mol Biol Evol ; 32(6): 1519-32, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25713211

ABSTRACT

Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 and the remaining six segments from H3N2. By deep sequencing the entire viral genome, we monitored the evolution of reassortment, quantifying the relative abundance of all IAV genome segments from the two parent strains over time and measuring the selection coefficients of the reassorting segments. Additionally, we observed several mutations coemerging with reassortment that were not found during passaging of pure parental IAV strains. Our results demonstrate how reassortment of the segmented genome can accelerate viral evolution in IAV, potentially enabled by the emergence of a small number of individual mutations.


Subject(s)
Alphainfluenzavirus/genetics , Genome, Viral , Reassortant Viruses/genetics , Selection, Genetic , Animals , Computational Biology , Dogs , Evolution, Molecular , Gene Frequency , Genotype , Hemagglutinin Glycoproteins, Influenza Virus/genetics , High-Throughput Nucleotide Sequencing , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Limit of Detection , Madin Darby Canine Kidney Cells , Nucleoproteins/genetics , Sequence Analysis, RNA
7.
Mol Ecol ; 25(1): 403-13, 2016 01.
Article in English | MEDLINE | ID: mdl-26211679

ABSTRACT

A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms.


Subject(s)
Cytomegalovirus/genetics , Genetic Drift , Genetic Variation , Selection, Genetic , Cytomegalovirus/classification , DNA, Viral/genetics , Evolution, Molecular , RNA, Long Noncoding/genetics , Recombination, Genetic , Sequence Analysis, DNA
8.
PLoS Genet ; 9(9): e1003735, 2013.
Article in English | MEDLINE | ID: mdl-24086142

ABSTRACT

Populations of human cytomegalovirus (HCMV), a large DNA virus, are highly polymorphic in patient samples, which may allow for rapid evolution within human hosts. To understand HCMV evolution, longitudinally sampled genomic populations from the urine and plasma of 5 infants with symptomatic congenital HCMV infection were analyzed. Temporal and compartmental variability of viral populations were quantified using high throughput sequencing and population genetics approaches. HCMV populations were generally stable over time, with ~88% of SNPs displaying similar frequencies. However, samples collected from plasma and urine of the same patient at the same time were highly differentiated with approximately 1700 consensus sequence SNPs (1.2% of the genome) identified between compartments. This inter-compartment differentiation was comparable to the differentiation observed in unrelated hosts. Models of demography (i.e., changes in population size and structure) and positive selection were evaluated to explain the observed patterns of variation. Evidence for strong bottlenecks (>90% reduction in viral population size) was consistent among all patients. From the timing of the bottlenecks, we conclude that fetal infection occurred between 13-18 weeks gestational age in patients analyzed, while colonization of the urine compartment followed roughly 2 months later. The timing of these bottlenecks is consistent with the clinical histories of congenital HCMV infections. We next inferred that positive selection plays a small but measurable role in viral evolution within a single compartment. However, positive selection appears to be a strong and pervasive driver of evolution associated with compartmentalization, affecting ≥ 34 of the 167 open reading frames (~20%) of the genome. This work offers the most detailed map of HCMV in vivo evolution to date and provides evidence that viral populations can be stable or rapidly differentiate, depending on host environment. The application of population genetic methods to these data provides clinically useful information, such as the timing of infection and compartment colonization.


Subject(s)
Cytomegalovirus Infections/genetics , Cytomegalovirus/genetics , Host-Pathogen Interactions/genetics , Selection, Genetic , Biological Evolution , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/urine , Cytomegalovirus Infections/virology , DNA, Viral/blood , DNA, Viral/genetics , Demography , Humans , Infant , Infant, Newborn , Polymorphism, Single Nucleotide
9.
J Virol ; 88(7): 3744-55, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24429365

ABSTRACT

UNLABELLED: We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE: This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.


Subject(s)
B-Lymphocytes/virology , Epstein-Barr Virus Infections/virology , Genetic Variation , Herpesvirus 4, Human/genetics , Oropharynx/virology , Viral Matrix Proteins/genetics , Cluster Analysis , DNA, Viral/chemistry , DNA, Viral/genetics , Herpesvirus 4, Human/isolation & purification , Humans , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Time Factors , Young Adult
10.
J Virol ; 88(1): 272-81, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155392

ABSTRACT

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y resistance mutation fixed reproducibly within the population. The presence of the H274Y mutation in the viral population, at either a low or a high frequency, led to measurable changes in the neuraminidase inhibition assay. Surprisingly, fixation of the resistance mutation was not accompanied by alterations of viral population diversity or differentiation, and oseltamivir did not alter the selective environment. While the neighboring K248E mutation was also a target of positive selection prior to H274Y fixation, H274Y was the primary beneficial mutation in the population. In addition, once evolved, the H274Y mutation persisted after the withdrawal of the drug, even when not fixed in viral populations. We conclude that only selection of H274Y is required for oseltamivir resistance and that H274Y is not deleterious in the absence of the drug. These collective results could offer an explanation for the recent reproducible rise in oseltamivir resistance in seasonal H1N1 IAV strains in humans.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Evolution, Molecular , Genome, Viral , Influenza A Virus, H1N1 Subtype/genetics , Oseltamivir/pharmacology , Animals , Cell Line , Dogs , High-Throughput Screening Assays , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/growth & development , Inhibitory Concentration 50 , Mutation , Viral Plaque Assay
11.
J Virol ; 86(12): 6815-24, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22496213

ABSTRACT

Human cytomegalovirus (HCMV) has been found in malignant gliomas at variable frequencies with efforts to date focused on characterizing the role(s) of single gene products in disease. Here, we reexamined the HCMV prevalence in malignant gliomas using different methods and began to dissect the genetics of HCMV in tumors. HCMV DNA was found in 16/17 (94%) tumor specimens. Viral DNA copy numbers were found to be low and variable, ranging from 10(2) to 10(6) copies/500 ng of total DNA. The tumor tissues had incongruences between viral DNA copy numbers and protein levels. However, nonlatent protein expression was detected in many tumors. The viral UL83 gene, encoding pp65, was found to segregate into five cancer-associated genotypes with a bias for amino acid changes in glioblastoma multiforme (GBM) in comparison to the low-grade tumors. Deep sequencing of a GBM-associated viral population resulted in 81,224 bp of genome coverage. Sequence analysis revealed the presence of intact open reading frames and higher numbers of high-frequency variations within the repeat long region compared to the unique long region, which harbors many core genes, and the unique short region (P = 0.001). This observation was in congruence with phylogenetic analyses across replication-competent viral strains in databases. The tumor-associated viral population was less variable (π = 0.1% and π(AA) = 0.08%) than that observed in other clinical infections. Moreover, 42/46 (91.3%) viral genes analyzed had dN/dS scores of <1, which is indicative of high amino acid sequence conservation. Taken together, these findings raise the possibility that replication-competent HCMV may exist in malignant gliomas.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Glioma/virology , Adult , Aged , Child, Preschool , Cytomegalovirus/classification , Cytomegalovirus/physiology , Female , Gene Dosage , Humans , Male , Middle Aged , Phylogeny , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
12.
PLoS Pathog ; 7(5): e1001344, 2011 May.
Article in English | MEDLINE | ID: mdl-21625576

ABSTRACT

Research has shown that RNA virus populations are highly variable, most likely due to low fidelity replication of RNA genomes. It is generally assumed that populations of DNA viruses will be less complex and show reduced variability when compared to RNA viruses. Here, we describe the use of high throughput sequencing for a genome wide study of viral populations from urine samples of neonates with congenital human cytomegalovirus (HCMV) infections. We show that HCMV intrahost genomic variability, both at the nucleotide and amino acid level, is comparable to many RNA viruses, including HIV. Within intrahost populations, we find evidence of selective sweeps that may have resulted from immune-mediated mechanisms. Similarly, genome wide, population genetic analyses suggest that positive selection has contributed to the divergence of the HCMV species from its most recent ancestor. These data provide evidence that HCMV, a virus with a large dsDNA genome, exists as a complex mixture of genome types in humans and offer insights into the evolution of the virus.


Subject(s)
Cytomegalovirus Infections/congenital , Cytomegalovirus/genetics , Genetic Variation , Infant, Newborn, Diseases/virology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
13.
Commun Biol ; 5(1): 439, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35545661

ABSTRACT

SARS-CoV-2 variants shaped the second year of the COVID-19 pandemic and the discourse around effective control measures. Evaluating the threat posed by a new variant is essential for adapting response efforts when community transmission is detected. In this study, we compare the dynamics of two variants, Alpha and Iota, by integrating genomic surveillance data to estimate the effective reproduction number (Rt) of the variants. We use Connecticut, United States, in which Alpha and Iota co-circulated in 2021. We find that the Rt of these variants were up to 50% larger than that of other variants. We then use phylogeography to show that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of Alpha were larger than those resulting from Iota introductions. By monitoring the dynamics of individual variants throughout our study period, we demonstrate the importance of routine surveillance in the response to COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Pandemics , SARS-CoV-2/genetics , United States/epidemiology
14.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35480627

ABSTRACT

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , New England/epidemiology , Public Health , SARS-CoV-2/genetics
15.
Commun Med (Lond) ; 1: 33, 2021.
Article in English | MEDLINE | ID: mdl-35602196

ABSTRACT

Background: It is estimated that up to 80% of infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are asymptomatic and asymptomatic patients can still effectively transmit the virus and cause disease. While much of the effort has been placed on decoding single nucleotide variation in SARS-CoV-2 genomes, considerably less is known about their transcript variation and any correlation with clinical severity in human hosts, as defined here by the presence or absence of symptoms. Methods: To assess viral genomic signatures of disease severity, we conducted a systematic characterization of SARS-CoV-2 transcripts and genetic variants in 81 clinical specimens collected from symptomatic and asymptomatic individuals using multi-scale transcriptomic analyses including amplicon-seq, short-read metatranscriptome and long-read Iso-seq. Results: Here we show a highly coordinated and consistent pattern of sgRNA expression from individuals with robust SARS-CoV-2 symptomatic infection and their expression is significantly repressed in the asymptomatic infections. We also observe widespread inter- and intra-patient variants in viral RNAs, known as quasispecies frequently found in many RNA viruses. We identify unique sets of deletions preferentially found primarily in symptomatic individuals, with many likely to confer changes in SARS-CoV-2 virulence and host responses. Moreover, these frequently occurring structural variants in SARS-CoV-2 genomes serve as a mechanism to further induce SARS-CoV-2 proteome complexity. Conclusions: Our results indicate that differential sgRNA expression and structural mutational burden are highly correlated with the clinical severity of SARS-CoV-2 infection. Longitudinally monitoring sgRNA expression and structural diversity could further guide treatment responses, testing strategies, and vaccine development.

16.
medRxiv ; 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34230938

ABSTRACT

Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is detected. However, this assessment requires that a true comparison can be made between the new variant and its predecessors because factors other than the virus genotype may influence spread and transmission. In this study, we develop a framework that integrates genomic surveillance data to estimate the relative effective reproduction number (R t ) of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. We find that the R t of B.1.1.7 was 6-10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses open-source methods requiring minimal computational resources, may be used to monitor near real-time variant dynamics in a myriad of settings.

17.
medRxiv ; 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34642698

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

18.
Mol Microbiol ; 73(2): 226-39, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19555451

ABSTRACT

Sensing DNA damage and initiation of genetic responses to repair DNA damage are critical to cell survival. In Escherichia coli, RecA polymerizes on ssDNA produced by DNA damage creating a RecA-DNA filament that interacts with the LexA repressor inducing the SOS response. RecA filament stability is negatively modulated by RecX and UvrD. recA730 (E38K) and recA4142 (F217Y) constitutively express the SOS response. recA4162 (I298V) and recA4164 (L126V) are intragenic suppressors of the constitutive SOS phenotype of recA730. Herein, it is shown that these suppressors are not allele specific and can suppress SOS(C) expression of recA730 and recA4142 in cis and in trans. recA4162 and recA4164 single mutants (and the recA730 and recA4142 derivatives) are Rec(+), UV(R) and are able to induce the SOS response after UV treatment like wild-type. UvrD and RecX are required for the suppression in two (recA730,4164 and recA4142,4162) of the four double mutants tested. To explain the data, one model suggests that recA(C) alleles promote SOS(C) expression by mimicking RecA filament structures that induce SOS and the suppressor alleles mimic RecA filament at end of SOS. UvrD and RecX are attracted to these latter structures to help dismantle or destabilize the RecA filament.


Subject(s)
DNA Helicases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Rec A Recombinases/metabolism , SOS Response, Genetics , Alleles , DNA Helicases/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Mutation, Missense , Rec A Recombinases/genetics , Substrate Specificity
19.
Mol Microbiol ; 67(6): 1347-59, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18298444

ABSTRACT

RecA is essential for recombination, DNA repair and SOS induction in Escherichia coli. ATP hydrolysis is known to be important for RecA's roles in recombination and DNA repair. In vitro reactions modelling SOS induction minimally require ssDNA and non-hydrolyzable ATP analogues. This predicts that ATP hydrolysis will not be required for SOS induction in vivo. The requirement of ATP binding and hydrolysis for SOS induction in vivo is tested here through the study of recA4159 (K72A) and recA2201 (K72R). RecA4159 is thought to have reduced affinity for ATP. RecA2201 binds, but does not hydrolyse ATP. Neither mutant was able to induce SOS expression after UV irradiation. RecA2201, unlike RecA4159, could form filaments on DNA and storage structures as measured with RecA-GFP. RecA2201 was able to form hybrid filaments and storage structures and was either recessive or dominant to RecA(+), depending on the ratio of the two proteins. RecA4159 was unable to enter RecA(+) filaments on DNA or storage structures and was recessive to RecA(+). It is concluded that ATP hydrolysis is essential for SOS induction. It is proposed that ATP binding is essential for storage structure formation and ability to interact with other RecA proteins in a filament.


Subject(s)
Adenosine Triphosphate/metabolism , Escherichia coli/metabolism , Rec A Recombinases/metabolism , Chromosomes, Bacterial , Escherichia coli/genetics , Escherichia coli/radiation effects , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/physiology , Hydrolysis , Mutation , Protein Binding , Rec A Recombinases/genetics , Rec A Recombinases/physiology , Ultraviolet Rays
20.
Mol Microbiol ; 69(5): 1165-79, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18627467

ABSTRACT

The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo. We have combined the K72R variant of RecA with another mutation, RecA E38K (recA730). In vitro, the double mutant RecA E38K/K72R (recA730,2201) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro.


Subject(s)
Adenosine Triphosphate/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Escherichia coli/enzymology , Rec A Recombinases/chemistry , SOS Response, Genetics , Amino Acid Substitution , Bacterial Proteins/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/ultrastructure , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/ultrastructure , Escherichia coli/genetics , Escherichia coli/radiation effects , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydrolysis , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Rec A Recombinases/ultrastructure , SOS Response, Genetics/radiation effects , Serine Endopeptidases/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL