Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35021190

ABSTRACT

Predicting the difference in thermodynamic stability between protein variants is crucial for protein design and understanding the genotype-phenotype relationships. So far, several computational tools have been created to address this task. Nevertheless, most of them have been trained or optimized on the same and 'all' available data, making a fair comparison unfeasible. Here, we introduce a novel dataset, collected and manually cleaned from the latest version of the ThermoMutDB database, consisting of 669 variants not included in the most widely used training datasets. The prediction performance and the ability to satisfy the antisymmetry property by considering both direct and reverse variants were evaluated across 21 different tools. The Pearson correlations of the tested tools were in the ranges of 0.21-0.5 and 0-0.45 for the direct and reverse variants, respectively. When both direct and reverse variants are considered, the antisymmetric methods perform better achieving a Pearson correlation in the range of 0.51-0.62. The tested methods seem relatively insensitive to the physiological conditions, performing well also on the variants measured with more extreme pH and temperature values. A common issue with all the tested methods is the compression of the $\Delta \Delta G$ predictions toward zero. Furthermore, the thermodynamic stability of the most significantly stabilizing variants was found to be more challenging to predict. This study is the most extensive comparisons of prediction methods using an entirely novel set of variants never tested before.


Subject(s)
Point Mutation , Proteins , Mutation , Protein Stability , Proteins/chemistry , Thermodynamics
2.
Genes (Basel) ; 12(6)2021 06 12.
Article in English | MEDLINE | ID: mdl-34204764

ABSTRACT

Several studies have linked disruptions of protein stability and its normal functions to disease. Therefore, during the last few decades, many tools have been developed to predict the free energy changes upon protein residue variations. Most of these methods require both sequence and structure information to obtain reliable predictions. However, the lower number of protein structures available with respect to their sequences, due to experimental issues, drastically limits the application of these tools. In addition, current methodologies ignore the antisymmetric property characterizing the thermodynamics of the protein stability: a variation from wild-type to a mutated form of the protein structure (XW→XM) and its reverse process (XM→XW) must have opposite values of the free energy difference (ΔΔGWM=-ΔΔGMW). Here we propose ACDC-NN-Seq, a deep neural network system that exploits the sequence information and is able to incorporate into its architecture the antisymmetry property. To our knowledge, this is the first convolutional neural network to predict protein stability changes relying solely on the protein sequence. We show that ACDC-NN-Seq compares favorably with the existing sequence-based methods.


Subject(s)
Deep Learning , Genetic Variation , Protein Stability , Sequence Analysis, Protein/methods , Amino Acid Substitution , Humans , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL