Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Proc Natl Acad Sci U S A ; 119(49): e2208900119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454758

ABSTRACT

Combining multiple therapeutic strategies in NRAS/BRAF mutant melanoma-namely MEK/BRAF kinase inhibitors, immune checkpoint inhibitors (ICIs), and targeted immunotherapies-may offer an improved survival benefit by overcoming limitations associated with any individual therapy. Still, optimal combination, order, and timing of administration remains under investigation. Here, we measure how MEK inhibition (MEKi) alters anti-tumor immunity by utilizing quantitative immunopeptidomics to profile changes in the peptide major histocompatibility molecules (pMHC) repertoire. These data reveal a collection of tumor antigens whose presentation levels are selectively augmented following therapy, including several epitopes present at over 1,000 copies per cell. We leveraged the tunable abundance of MEKi-modulated antigens by targeting four epitopes with pMHC-specific T cell engagers and antibody drug conjugates, enhancing cell killing in tumor cells following MEK inhibition. These results highlight drug treatment as a means to enhance immunotherapy efficacy by targeting specific upregulated pMHCs and provide a methodological framework for identifying, quantifying, and therapeutically targeting additional epitopes of interest.


Subject(s)
Melanoma , Mitogen-Activated Protein Kinase Kinases , Humans , Mitogen-Activated Protein Kinase Kinases/genetics , Antigens, Neoplasm/genetics , Melanoma/drug therapy , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Epitopes
2.
Nat Chem Biol ; 17(1): 113-121, 2021 01.
Article in English | MEDLINE | ID: mdl-33082574

ABSTRACT

Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml-1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Single-Chain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Binding Sites, Antibody/genetics , Binding Sites, Antibody/immunology , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Molecular , Peptide Library , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2 , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
3.
Proc Natl Acad Sci U S A ; 117(45): 28046-28055, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33093202

ABSTRACT

An essential mechanism for severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here, we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest-affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human immunoglobulin crystallizable fragment (Fc) domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2-pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50s) in the 10- to 100-ng/mL range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-using coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated from convalescent patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Drug Design , Protein Engineering/methods , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/metabolism , Binding Sites , HEK293 Cells , Humans , Molecular Docking Simulation , Mutation , Peptide Library , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Spike Glycoprotein, Coronavirus/chemistry
4.
Bioorg Med Chem ; 26(19): 5299-5306, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29661622

ABSTRACT

Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that regulates expression of protein chaperones and cell survival factors. In cancer, HSF1 plays a unique role, hijacking the normal stress response to drive a cancer-specific transcriptional program. These observations suggest that HSF1 inhibitors could be promising therapeutics. However, HSF1 is activated through a complex mechanism, which involves release of a negative regulatory domain, leucine zipper 4 (LZ4), from a masked oligomerization domain (LZ1-3), and subsequent binding of the oligomer to heat shock elements (HSEs) in HSF1-responsive genes. Recent crystal structures have suggested that HSF1 oligomers are held together by extensive, buried contact surfaces, making it unclear whether there are any possible binding sites for inhibitors. Here, we have rationally designed a series of peptide-based molecules based on the LZ4 and LZ1-3 motifs. Using a plate-based, fluorescence polarization (FP) assay, we identified a minimal region of LZ4 that suppresses binding of HSF1 to the HSE. Using this information, we converted this peptide into a tracer and used it to understand how binding of LZ4 to LZ1-3 suppresses HSF1 activation. Together, these results suggest a previously unexplored avenue in the development of HSF1 inhibitors. Furthermore, the findings highlight how native interactions can inspire the design of inhibitors for even the most challenging protein-protein interactions (PPIs).


Subject(s)
Drug Design , Heat Shock Transcription Factors/antagonists & inhibitors , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Fluorescence Polarization , Heat Shock Transcription Factors/metabolism , Humans , Leucine Zippers , Peptides/chemical synthesis , Peptides/metabolism
5.
Proc Natl Acad Sci U S A ; 112(15): 4552-7, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25825775

ABSTRACT

Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and ß-amino acid residues ("α/ß-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/ß-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/ß-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/ß-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/ß-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.


Subject(s)
Peptides/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Proteins/chemistry , Amino Acid Sequence , Binding Sites/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Crystallography, X-Ray , Dose-Response Relationship, Drug , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Models, Molecular , Molecular Sequence Data , Peptides/metabolism , Peptides/pharmacology , Protein Binding , Proteins/metabolism , Sequence Homology, Amino Acid , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
6.
bioRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090675

ABSTRACT

Human leukocyte antigens (HLA) display peptides largely from intracellular proteins on the surface of cells in major histocompatibility complex (MHC)-peptide complexes. These complexes provide a biological window into the cell, and peptides derived from disease-associated antigens can serve as biomarkers and therapeutic targets. Thus, proper identification of peptides and the corresponding presenting HLA allele in disease phenotypes is important for the design and execution of therapeutic strategies using engineered T-cell receptors or antibodies. Yet, current mass spectrometry methods for profiling the immunopeptidome typically require large and complex sample inputs, complicating the study of several disease phenotypes and lowering the confidence of both peptide and allele identification. Here, we describe a novel secreted HLA (sHLA) Fc-fusion construct that allows for simple peptide identification from single HLA alleles in two important disease models: hypoxic pancreatic ductal adenocarcinoma (PDAC) and cellular senescence. We identify hypoxia and senescence-associated peptides that could act as future targets for immunotherapy. More generally, the method streamlines the time between sample preparation and injection from days to hours, yielding allele-restricted target identification in a temporally controlled manner. Overall, this method identified >30,000 unique HLA-associated peptides across two different HLA alleles and seven cell lines. Notably, ∻9,300 of these unique HLA-associated peptides had previously not been identified in the Immune Epitope Database. We believe the sHLA Fc-fusion capture technology will accelerate the study of the immunopeptidome as therapeutic interest in HLA-peptide complexes increases in cancer and beyond.

7.
PNAS Nexus ; 2(12): pgad400, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38099269

ABSTRACT

Human leukocyte antigens (HLA) present peptides largely from intracellular proteins on cell surfaces. As these complexes can serve as biomarkers in disease, proper identification of peptides derived from disease-associated antigens and the corresponding presenting HLA is important for the design and execution of therapeutic strategies. Yet, current mass spectrometry methods for immunopeptidomic profiling require large and complex sample inputs, hindering the study of certain disease phenotypes and lowering confidence in peptide and allele identification. Here, we describe a secreted HLA (sHLA)-Fc fusion construct for simple single HLA allele profiling in hypoxic pancreatic ductal adenocarcinoma (PDAC) and cellular senescence. This method streamlines sample preparation, enables temporal control, and provides allele-restricted target identification. Over 30,000 unique HLA-associated peptides were identified across 2 different HLA alleles and 7 cell lines, with ∼9,300 peptides newly discovered. The sHLA-Fc fusion capture technology holds the potential to expedite immunopeptidomics and advance therapeutic interest in HLA-peptide complexes.

8.
ACS Chem Biol ; 17(3): 545-555, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35212540

ABSTRACT

Senescent cells undergo a permanent cell cycle arrest and drive a host of age-related pathologies. Recent transgenic mouse models indicate that removing cells expressing the senescence marker p16Ink4a (p16) can increase median lifespan and delay the onset of many aging phenotypes. However, identifying and eliminating native human cells expressing p16 has remained a challenge. We hypothesize that senescent cells display peptides derived from p16 in major histocompatibility complex (MHC)-peptide complexes on the cell surface that could serve as targetable antigens for antibody-based biologics. Using Fab-phage display technology, we generated antibodies that bind to a p16 MHC-peptide complex from the human leukocyte antigen (HLA) allele HLA-B*35:01. When converted to single-chain Fab chimeric antigen receptor (CAR) constructs, these antibodies can recognize naturally presented p16 MHC-peptide complexes on the surface of cells and activate Jurkat cells. Furthermore, we developed antibodies against predicted p16 MHC-peptide complexes for HLA-A*02:01 that specifically recognize their respective antigen on the surface of cells. These tools establish a platform to survey the surface of senescent cells and provide a potential novel senolytic strategy.


Subject(s)
Major Histocompatibility Complex , Receptors, Chimeric Antigen , Animals , Antibodies , Mice , Mice, Transgenic , Peptides
9.
MAbs ; 13(1): 1893426, 2021.
Article in English | MEDLINE | ID: mdl-33666135

ABSTRACT

Numerous neutralizing antibodies that target SARS-CoV-2 have been reported, and most directly block binding of the viral Spike receptor-binding domain (RBD) to angiotensin-converting enzyme II (ACE2). Here, we deliberately exploit non-neutralizing RBD antibodies, showing they can dramatically assist in neutralization when linked to neutralizing binders. We identified antigen-binding fragments (Fabs) by phage display that bind RBD, but do not block ACE2 or neutralize virus as IgGs. When these non-neutralizing Fabs were assembled into bispecific VH/Fab IgGs with a neutralizing VH domain, we observed a ~ 25-fold potency improvement in neutralizing SARS-CoV-2 compared to the mono-specific bi-valent VH-Fc alone or the cocktail of the VH-Fc and IgG. This effect was epitope-dependent, reflecting the unique geometry of the bispecific antibody toward Spike. Our results show that a bispecific antibody that combines both neutralizing and non-neutralizing epitopes on Spike-RBD is a promising and rapid engineering strategy to improve the potency of SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitopes/immunology , Immunoglobulin Fab Fragments/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/genetics , Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/therapeutic use , COVID-19/genetics , Epitopes/genetics , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
10.
ACS Chem Biol ; 15(8): 2116-2124, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32662976

ABSTRACT

Aberrant signaling by tumor necrosis factor-α (TNFα) is associated with inflammatory diseases that can be treated with engineered proteins that inhibit binding of this cytokine to cell-surface receptors. Despite these clinical successes, there is considerable interest in the development of smaller antagonists of TNFα-receptor interactions. We describe a new 29-residue α/ß-peptide, a molecule that contains three ß-amino acid residues and three α-aminoisobutryic acid (Aib) residues, that displays potent inhibition of TNFα binding to TNFα receptor 1 (TNFR1) and rescues cells from TNFα-induced death. The complement of nonproteinogenic residues renders this α/ß-peptide highly resistant to proteolysis, relative to all-α analogues. The mechanism of inhibitory action of the new 29-mer involves disruption of the trimeric TNFα quaternary structure, which prevents productive binding to TNFα receptors. Unexpectedly, we discovered that peptide-induced trimer disruption can be promoted by structurally diverse small molecules, including a detergent commonly used during selection procedures. The discovery of this synergistic effect provides a new context for understanding previous reports on peptidic antagonists of TNFα-receptor interactions and suggests new avenues for future efforts to block signaling via proteins with an active form that is oligomeric, including other members of the TNFα family.


Subject(s)
Biopolymers/chemistry , Peptides/metabolism , Small Molecule Libraries/metabolism , Tumor Necrosis Factor-alpha/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Peptides/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Small Molecule Libraries/chemistry , Tumor Necrosis Factor-alpha/metabolism
11.
bioRxiv ; 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32817948

ABSTRACT

Neutralizing agents against SARS-CoV-2 are urgently needed for treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domain binders with high affinity toward neutralizing epitopes without the need for high-resolution structural information. We constructed a VH-phage library and targeted a known neutralizing site, the angiotensin-converting enzyme 2 (ACE2) binding interface of the trimeric SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified 85 unique VH binders to two non-overlapping epitopes within the ACE2 binding site on Spike-RBD. This enabled us to systematically link these VH domains into multivalent and bi-paratopic formats. These multivalent and bi-paratopic VH constructs showed a marked increase in affinity to Spike (up to 600-fold) and neutralization potency (up to 1400-fold) on pseudotyped SARS-CoV-2 virus when compared to the standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with half-minimal inhibitory concentration (IC 50 ) of 4.0 nM (180 ng/mL). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain bound an RBD at the ACE2 binding site, explaining its increased neutralization potency and confirming our original design strategy. Our results demonstrate that targeted selection and engineering campaigns using a VH-phage library can enable rapid assembly of highly avid and potent molecules towards therapeutically important protein interfaces.

12.
bioRxiv ; 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32766586

ABSTRACT

An essential mechanism for SARS-CoV-1 and -2 infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human Fc domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2 pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50) in the 10-100 ng/ml range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-utilizing coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated or generated from convalescent patients.

13.
Biol Open ; 7(7)2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30037883

ABSTRACT

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

SELECTION OF CITATIONS
SEARCH DETAIL