ABSTRACT
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly often accompanied by other structural anomalies and/or neurobehavioral manifestations. Rare de novo protein-coding variants and copy-number variations contribute to CDH in the population. However, most individuals with CDH remain genetically undiagnosed. Here, we perform integrated de novo and common-variant analyses using 1,469 CDH individuals, including 1,064 child-parent trios and 6,133 ancestry-matched, unaffected controls for the genome-wide association study. We identify candidate CDH variants in 15 genes, including eight novel genes, through deleterious de novo variants. We further identify two genomic loci contributing to CDH risk through common variants with similar effect sizes among Europeans and Latinx. Both loci are in putative transcriptional regulatory regions of developmental patterning genes. Estimated heritability in common variants is â¼19%. Strikingly, there is no significant difference in estimated polygenic risk scores between isolated and complex CDH or between individuals harboring deleterious de novo variants and individuals without these variants. The data support a polygenic model as part of the CDH genetic architecture.
ABSTRACT
Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.
Subject(s)
Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Signal Transduction , Animals , Ataxin-10 , Centrosome/metabolism , Cilia/metabolism , Ciliary Motility Disorders/genetics , Encephalocele/genetics , Hedgehog Proteins/metabolism , Humans , Kidney Diseases, Cystic/metabolism , Mice , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Polycystic Kidney Diseases/genetics , Retinitis Pigmentosa , ZebrafishABSTRACT
BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.
Subject(s)
Cardiovascular System , Urinary Tract , Pregnancy , Female , Humans , Animals , Mice , Zebrafish/genetics , DNA Copy Number Variations , Morpholinos , Urinary Tract/abnormalities , Central Nervous SystemABSTRACT
BACKGROUND: Based on single case reports, the COVID-19 Related Obstetric and Neonatal Outcome Study (CRONOS) registry, sponsored by the German Society for Perinatal Medicine (DGPM), investigated the likelihood that SARS-CoV-2 infections of the mother in (early) pregnancy cause embryopathies and/or fetopathies. MATERIAL/METHODS: The CRONOS registry enrolled a total of 8032 women with confirmed SARS-CoV-2 infection during pregnancy at more than 130 participating hospitals from April 2020 to February 2023. Both maternal and fetal data were documented and the anonymized multicenter data were analyzed. RESULTS: Of 7142 fully documented pregnancies (including postnatal data), 140 showed congenital malformations. 8.57% of the mothers had had a SARS-CoV-2-infection in the 1st trimester and 36.43% in the 2nd trimester. In 66 cases with congenital malformations (47.14%), the malformation was only detected after the diagnosis of a maternal SARS-CoV-2 infection. The overall prevalence of congenital malformations in this cohort was 1.96%, compared to a prevalence of 2.39% reported in the EUROCAT (European network of population-based registries for the epidemiological surveillance of congenital anomalies) pre-pandemic registry between 2017-2019. DISCUSSION: Our multicenter data argue against a link between maternal SARS-CoV-2 infection in early pregnancy and congenital malformation.
Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Infant, Newborn , Pregnancy , COVID-19/epidemiology , COVID-19/diagnosis , Incidence , Parturition , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome , Registries , SARS-CoV-2 , Multicenter Studies as TopicABSTRACT
BACKGROUND: Intrauterine growth restriction (IUGR) has been associated with changes in kidney anatomy, nephrogenesis and the vascular system, resulting in secondary arterial hypertension and kidney damage in adulthood. Here, we compare routine clinical and metabolic parameters between IUGR and non-IUGR study participants in the neonatal and early infant period. METHODS: A total of 39 IUGR and 60 non-IUGR neonates were included during an 18-month study period. We compared blood pressure, serum creatinine (SCr), urea nitrogen (BUN), urinary albumin, α-1-microglobulin, transferrin, immunoglobulin G and total protein excretion in spontaneous urine normalized by urine creatinine level during the hospital stay. RESULTS: There were no significant differences in mean values of blood pressure and urinary protein excretion between cases and controls. SCr and BUN levels were lower in the IUGR group compared to the non-IUGR group. CONCLUSIONS: The lower levels of SCr and BUN may be attributed to lower liver and muscle mass in IUGR neonates and young infants. Biomarkers currently used in routine clinical care do not allow early postnatal prediction of higher blood pressure or worse kidney function due to IUGR, so further studies are needed. A higher resolution version of the Graphical abstract is available as Supplementary information.
Subject(s)
Hypertension , Kidney Diseases , Infant, Newborn , Female , Infant , Humans , Fetal Growth Retardation , Blood Pressure , Kidney , Kidney Diseases/diagnosis , Kidney Diseases/etiologyABSTRACT
BACKGROUND AND OBJECTIVE: Umbilical venous catheters (UVC) and peripherally inserted central catheters (PICC) are commonly used in preterm infants but have been associated with a number of serious complications. We performed a survey in Austria and Germany to assess the use of UVCs and PICCs in preterm infants with a birth weight <â¯1250â¯g and associated rates of catheter-related adverse events. METHODS: Electronic survey of participating centers of the NeoVitaA trial. Main outcome parameter was the reported rates of UVC- and PICC-associated complications (infection, thrombosis, emboli, organ injury, arrhythmia, dislocation, miscellaneous). RESULTS: In total, 20 neonatal intensive care units (NICU) providing maximal intensive care in Austria and Germany (level I) were contacted, with a senior neonatologist response rate of 12/20 (60%). The reported rates for UVC with a dwell time of 1-10 days were bacterial infection: 4.2⯱ 3.4% (range 0-10%); thrombosis: 7.3⯱ 7.1% (0-20%); emboli: 0.9⯱ 2.0% (0-5%); organ injury: 1.1⯱ 1.9% (0-5%); cardiac arrhythmia: 2.2⯱ 2.5% (0-5%); and dislocation: 5.4⯱ 8.7% (0-30%); and for PICCs with a dwell time of 1-14 days bacterial infection: 15.0⯱ 3.4% (range 2.5-30%); thrombosis; 4.3⯱ 3.5% (0-10%); emboli: 0.8⯱ 1.6% (0-5%); organ injury: 1.5⯱ 2.3% (0-5%); cardiac arrhythmia: 1.5⯱ 2.3% (0-5%), and dislocation: 8.5⯱ 4.6% (0-30%). CONCLUSION: The catheter-related complication rates reported in this survey differed between UVCs and PICCs and were higher than those reported in the literature. To generate more reliable data on this clinically important issue, we plan to perform a large prospective multicenter randomized controlled trial investigating the non-inferiority of a prolonged UVC dwell time (up to 10 days) against the early change (up to 5 days) to a PICC.
Subject(s)
Bacterial Infections , Catheterization, Central Venous , Thrombosis , Infant , Infant, Newborn , Humans , Infant, Premature , Birth Weight , Catheterization, Central Venous/adverse effects , Catheterization, Central Venous/methods , Prospective Studies , Austria , Retrospective Studies , Catheters , Bacterial Infections/etiology , Thrombosis/epidemiology , Thrombosis/etiology , Infant, Very Low Birth WeightABSTRACT
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life, and in utero obstruction to urine flow is a frequent cause of secondary upper urinary tract malformations. Here, using whole-exome sequencing, we identified three different biallelic mutations in CHRNA3, which encodes the α3 subunit of the nicotinic acetylcholine receptor, in five affected individuals from three unrelated families with functional lower urinary tract obstruction and secondary CAKUT. Four individuals from two families have additional dysautonomic features, including impaired pupillary light reflexes. Functional studies in vitro demonstrated that the mutant nicotinic acetylcholine receptors were unable to generate current following stimulation with acetylcholine. Moreover, the truncating mutations p.Thr337Asnfs∗81 and p.Ser340∗ led to impaired plasma membrane localization of CHRNA3. Although the importance of acetylcholine signaling in normal bladder function has been recognized, we demonstrate for the first time that mutations in CHRNA3 can cause bladder dysfunction, urinary tract malformations, and dysautonomia. These data point to a pathophysiologic sequence by which monogenic mutations in genes that regulate bladder innervation may secondarily cause CAKUT.
Subject(s)
Autonomic Nervous System Diseases/etiology , Kidney/abnormalities , Mutation , Receptors, Nicotinic/genetics , Urinary Tract/abnormalities , Urogenital Abnormalities/etiology , Adult , Autonomic Nervous System Diseases/genetics , Autonomic Nervous System Diseases/pathology , Female , Follow-Up Studies , Humans , Kidney/pathology , Male , Pedigree , Prognosis , Urinary Tract/pathology , Urogenital Abnormalities/genetics , Urogenital Abnormalities/pathology , Young AdultABSTRACT
Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853∗]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage.
Subject(s)
Chromosome Aberrations , DNA-Binding Proteins/genetics , Fetal Diseases/genetics , Mutation , Urinary Bladder Neck Obstruction/congenital , Urinary Bladder Neck Obstruction/genetics , Adult , Animals , Child , Female , Fetal Diseases/pathology , Genes, Dominant , Gestational Age , Humans , Male , Mice , Middle Aged , Pedigree , Pregnancy , Urinary Bladder Neck Obstruction/pathology , ZebrafishABSTRACT
Aymé-Gripp syndrome is a multisystemic disorder caused by a heterozygous variation in the MAF gene (OMIM*177075). Key features are congenital cataracts, sensorineural hearing loss, and a characteristic facial appearance. In a proportion of individuals, pericardial effusion or pericarditis has been reported as part of the phenotypic spectrum. In the present case, a large persistent cytokine-enriched pericardial effusion was the main pre- and postnatal symptom that led to the clinical and later molecular diagnosis of Aymé-Gripp syndrome. In the postnatal course, the typical Aymé-Gripp syndrome-associated features bilateral cataracts and hearing loss were diagnosed. We propose that activating dominant variants in the cytokine-modulating transcription factor c-MAF causes cytokine-enriched pericardial effusions possibly representing a key feature of Aymé-Gripp syndrome.
Subject(s)
Cataract , Hearing Loss, Sensorineural , Pericardial Effusion , Cataract/genetics , Cytokines/genetics , Facies , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Humans , Pericardial Effusion/diagnosis , Pericardial Effusion/geneticsABSTRACT
Kidney dysplasia is one of the most frequent causes of chronic kidney failure in children. While dysplasia is a histological diagnosis, the term 'kidney dysplasia' is frequently used in daily clinical life without histopathological confirmation. Clinical parameters of kidney dysplasia have not been clearly defined, leading to imprecise communication amongst healthcare professionals and patients. This lack of consensus hampers precise disease understanding and the development of specific therapies. Based on a structured literature search, we here suggest a common basis for clinical, imaging, genetic, pathological and basic science aspects of non-obstructive kidney dysplasia associated with functional kidney impairment. We propose to accept hallmark sonographic findings as surrogate parameters defining a clinical diagnosis of dysplastic kidneys. We suggest differentiated clinical follow-up plans for children with kidney dysplasia and summarize established monogenic causes for non-obstructive kidney dysplasia. Finally, we point out and discuss research gaps in the field.
Subject(s)
Kidney Diseases , Renal Insufficiency , Urogenital Abnormalities , Child , Humans , Kidney/pathology , Kidney Diseases/pathology , Renal Insufficiency/pathologyABSTRACT
Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.
Subject(s)
Abnormalities, Multiple/etiology , Bone Diseases, Developmental/etiology , Intellectual Disability/etiology , Repressor Proteins/genetics , Tooth Abnormalities/etiology , Abnormalities, Multiple/genetics , Adolescent , Bone Diseases, Developmental/genetics , Child , Child, Preschool , Face/abnormalities , Facies , Female , Humans , Intellectual Disability/genetics , Male , Mutation , Pedigree , Tooth Abnormalities/genetics , Young AdultABSTRACT
The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac anomalies (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb anomalies (L). For the clinical diagnosis, the presence of at least three CFs is required, individuals presenting with only two CFs have been categorized as VATER/VACTERL-like. The majority of VATER/VACTERL individuals displays a renal phenotype. Hitherto, variants in FGF8, FOXF1, HOXD13, LPP, TRAP1, PTEN, and ZIC3 have been associated with the VATER/VACTERL association; however, large-scale re-sequencing could only confirm TRAP1 and ZIC3 as VATER/VACTERL disease genes, both associated with a renal phenotype. In this study, we performed exome sequencing in 21 individuals and their families with a renal VATER/VACTERL or VATER/VACTERL-like phenotype to identify potentially novel genetic causes. Exome analysis identified biallelic and X-chromosomal hemizygous potentially pathogenic variants in six individuals (29%) in B9D1, FREM1, ZNF157, SP8, ACOT9, and TTLL11, respectively. The online tool GeneMatcher revealed another individual with a variant in ZNF157. Our study suggests six biallelic and X-chromosomal hemizygous VATER/VACTERL disease genes implicating all six genes in the expression of human renal malformations.
Subject(s)
Anorectal Malformations/genetics , Esophageal Atresia/genetics , Genetic Predisposition to Disease , Heart Diseases/genetics , Tracheoesophageal Fistula/genetics , Anorectal Malformations/complications , Anorectal Malformations/pathology , Cytoskeletal Proteins/genetics , DNA-Binding Proteins/genetics , Esophageal Atresia/complications , Esophageal Atresia/pathology , Female , Genes, X-Linked/genetics , Genetic Association Studies , HSP90 Heat-Shock Proteins/genetics , Heart Diseases/complications , Heart Diseases/pathology , Hemizygote , Homeodomain Proteins/genetics , Humans , Kidney/abnormalities , Male , Receptors, Interleukin/genetics , Tracheoesophageal Fistula/complications , Tracheoesophageal Fistula/pathology , Transcription Factors/genetics , Exome SequencingABSTRACT
Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.
Subject(s)
Apolipoprotein C-III/blood , Developmental Disabilities/genetics , N-Acetylgalactosaminyltransferases/genetics , Adolescent , Animals , Apolipoprotein C-III/genetics , Child , Child, Preschool , Female , Glycosylation , Humans , Loss of Function Mutation , Male , Mice , Pedigree , Rats , Young Adult , Polypeptide N-acetylgalactosaminyltransferaseABSTRACT
BACKGROUND: Evidence for periconceptional or prenatal environmental risk factors for the development of congenital diaphragmatic hernia (CDH) is still scarce. Here, in a case-control study we investigated potential environmental risk factors in 199 CDH patients compared to 597 healthy control newborns. METHODS: The following data was collected: time of conception and birth, maternal BMI, parental risk factors such as smoking, alcohol or drug intake, use of hairspray, contact to animals and parental chronic diseases. CDH patients were born between 2001 and 2019, all healthy control newborns were born in 2011. Patients and control newborns were matched in the ratio of three to one. RESULTS: Presence of CDH was significantly associated with maternal periconceptional alcohol intake (odds ratio = 1.639, 95% confidence interval 1.101-2.440, p = 0.015) and maternal periconceptional use of hairspray (odds ratio = 2.072, 95% confidence interval 1.330-3.229, p = 0.001). CONCLUSION: Our study suggests an association between CDH and periconceptional maternal alcohol intake and periconceptional maternal use of hairspray. Besides the identification of novel and confirmation of previously described parental risk factors, our study underlines the multifactorial background of isolated CDH.
Subject(s)
Hernias, Diaphragmatic, Congenital , Case-Control Studies , Child , Female , Hernias, Diaphragmatic, Congenital/epidemiology , Hernias, Diaphragmatic, Congenital/etiology , Humans , Infant, Newborn , Parents , Pregnancy , Risk Factors , Smoking/adverse effectsABSTRACT
Nearly three decades ago, the association between Bladder cancer (BC) and DNA methylation has initially been reported. Indeed, in the recent years, the mechanism connecting these two has gained deeper insights. Still, the mediocre performance of DNA methylation markers in the clinics raises the major concern. Strikingly, whether it is the inter-individual methylation variations or the paucity of knowledge about methylation fingerprints lying within histologically distinct subtypes of BC requires critical discussion. In the future, besides identifying the initial causative factors, it will be important to illustrate the cascade of events that determines the fraction of the genome to convey altered methylation patterns specific towards each cancer type.
ABSTRACT
Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype.
Subject(s)
Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Craniofacial Abnormalities/genetics , Genetic Predisposition to Disease/genetics , Hand Deformities, Congenital/genetics , Hematologic Neoplasms/genetics , Intellectual Disability/genetics , Mutation , Nails, Malformed/genetics , Nuclear Proteins/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Blotting, Western , Carrier Proteins/metabolism , Cell Line , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Child , Child, Preschool , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Female , Gene Expression Profiling , Genetic Association Studies , Germ-Line Mutation , HEK293 Cells , Hand Deformities, Congenital/metabolism , Hand Deformities, Congenital/pathology , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Nails, Malformed/metabolism , Nails, Malformed/pathology , Nuclear Proteins/metabolism , PhenotypeABSTRACT
The treatment of major birth defects are key concerns for child health. Hitherto, for the majority of birth defects, the underlying cause remains unknown, likely to be heterogeneous. The implicated mortality and/or reduced fecundity in major birth defects suggest a significant fraction of mutational de novo events among the affected individuals. With the advent of systematic array-based molecular karyotyping, larger cohorts of affected individuals have been screened over the past decade. This review discusses the identification of disease-causing copy-number variations (CNVs) among individuals with different congenital malformations. It highlights the differences in findings depending on the respective congenital malformation. It looks at the differences in findings of CNV analysis in non-isolated complex congenital malformations, associated with central nervous system malformations or intellectual disabilities, compared to isolated single organ-system malformations. We propose that the more complex an organ system is, and the more genes involved during embryonic development, the more likely it is that mutational de novo events, comprising CNVs, will confer to the expression of birth defects of this organ system.
Subject(s)
Congenital Abnormalities/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Child , Congenital Abnormalities/epidemiology , DNA Copy Number Variations/genetics , DNA Mutational Analysis/methods , Female , Humans , Infant, Newborn , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Karyotyping/methods , Male , Nervous System Malformations/epidemiology , Nervous System Malformations/genetics , Phenotype , Polymorphism, Genetic/physiology , PregnancyABSTRACT
Pulmonary hypertension (PH) and lung hypoplasia are major contributors to morbidity and mortality in newborns with congenital diaphragmatic hernia (CDH). The soluble receptor for advanced glycation end products (sRAGE) is a marker of endothelial function and might be associated with disease severity in CDH newborns. In a cohort of 30 CDH newborns and 20 healthy control newborns, sRAGE concentration was measured at birth and at 6 h, 12 h, 24 h, 48 h, and 7-10 days. In healthy newborns, sRAGE was significantly higher at birth and at 48 h compared with CDH newborns (both P < 0.001). Among CDH newborns, sRAGE was significantly lower at birth (P = 0.033) and at 7-10 days (P = 0.035) in patients receiving extracorporeal membrane oxygenation (ECMO) compared with patients not receiving ECMO. In contrast, CDH newborns receiving ECMO had significantly higher values at 6 h (P = 0.001), 12 h (P = 0.004), and 48 h (0.032). Additionally, sRAGE correlated significantly with PH severity, intensity and duration of mechanical ventilation, and prenatally assessed markers of CDH severity (lung size, liver herniation). The probability to receive ECMO therapy was five times higher in CDH newborns with sRAGE concentrations below the calculated cutoff of 650 pg/ml at birth (P = 0.002) and nine times higher in CDH newborns with sRAGE concentrations above the cutoff of 3,500 pg/ml at 6 h (P = 0.001). These findings suggest a potential involvement of sRAGE in the pathophysiology of CDH and may act as a therapeutic target in future treatment approaches.
Subject(s)
Hernias, Diaphragmatic, Congenital/pathology , Hypertension, Pulmonary/pathology , Lung/pathology , Receptor for Advanced Glycation End Products/blood , Extracorporeal Membrane Oxygenation , Fetal Blood/chemistry , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/therapy , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Liver/pathology , Prospective Studies , Receptor for Advanced Glycation End Products/biosynthesis , Receptor for Advanced Glycation End Products/genetics , Respiration, ArtificialABSTRACT
Nonsyndromic cleft lip with/without cleft palate (nsCL/P) and nonsyndromic cleft palate only (nsCPO) are the most frequent subphenotypes of orofacial clefts. A common syndromic form of orofacial clefting is Van der Woude syndrome (VWS) where individuals have CL/P or CPO, often but not always associated with lower lip pits. Recently, â¼5% of VWS-affected individuals were identified with mutations in the grainy head-like 3 gene (GRHL3). To investigate GRHL3 in nonsyndromic clefting, we sequenced its coding region in 576 Europeans with nsCL/P and 96 with nsCPO. Most strikingly, nsCPO-affected individuals had a higher minor allele frequency for rs41268753 (0.099) than control subjects (0.049; p = 1.24 × 10(-2)). This association was replicated in nsCPO/control cohorts from Latvia, Yemen, and the UK (pcombined = 2.63 × 10(-5); ORallelic = 2.46 [95% CI 1.6-3.7]) and reached genome-wide significance in combination with imputed data from a GWAS in nsCPO triads (p = 2.73 × 10(-9)). Notably, rs41268753 is not associated with nsCL/P (p = 0.45). rs41268753 encodes the highly conserved p.Thr454Met (c.1361C>T) (GERP = 5.3), which prediction programs denote as deleterious, has a CADD score of 29.6, and increases protein binding capacity in silico. Sequencing also revealed four novel truncating GRHL3 mutations including two that were de novo in four families, where all nine individuals harboring mutations had nsCPO. This is important for genetic counseling: given that VWS is rare compared to nsCPO, our data suggest that dominant GRHL3 mutations are more likely to cause nonsyndromic than syndromic CPO. Thus, with rare dominant mutations and a common risk variant in the coding region, we have identified an important contribution for GRHL3 in nsCPO.