ABSTRACT
Cistaceae are shrubs, subshrubs and herbs that often occur in stressful, fire-prone or disturbed environments and form ectomycorrhizal (ECM) associations with symbiotic fungi. Although some Cistaceae are long-lived shrubs that grow to significant size, others are herbaceous annuals or short-lived plants. Thus, Cistaceae are atypical ECM hosts that are fundamentally different in their biology from trees that are the more typically studied ECM hosts. The Mediterranean region is the center of diversity for Cistaceae and the ectomycorrhizal fungi associated with Cistaceae hosts have primarily been studied in Europe, North Africa, and the Middle East. Mediterranean Cistaceae often host diverse communities of ECM fungi, but they also act as hosts for some ECM fungi that putatively show host-specificity or strong host preference for Cistaceae (including species of Delastria, Hebeloma, Terfezia, and Tirmania). The ECM associations of Cistaceae in North America, however, remain highly understudied. Here we use fungal DNA metabarcoding to document the ectomycorrhizal fungal communities associated with Crocanthemum and Lechea (Cistaceae) in open, fire-prone sandhill habitats in north Florida. At each site we also sampled nearby Pinus to determine whether small, herbaceous Cistaceae have specialized ECM fungi or whether they share their ECM fungal community with nearby pines. The ECM communities of Florida Cistaceae are dominated by Cenococcum (Ascomycota) and Russula (Basidiomycota) species but were also significantly associated with Delastria, an understudied genus of mostly truffle-like Pezizales (Ascomycota). Although many Cistaceae ECM fungi were shared with neighboring pines, the ECM communities with Cistaceae were nonetheless significantly different than those of pines.
ABSTRACT
Trichomycetes is a group of microorganisms that was considered a class of fungi comprising four orders of commensal, gut-dwelling endosymbionts obligately associated with arthropods. Since molecular phylogenies revealed two of those orders (Amoebidiales and Eccrinales="protist trichos") to be closely related to members of the protist class Ichthyosporea (=Mesomycetozoea), trichomycetes have been considered an ecological association of both early-diverging fungi and protists. Understanding of the taxonomy, evolution, and diversity of the protist trichos is lacking largely due to the difficulties inherent in species collection that have contributed to undersampling and understudy. The most recent classification divides the protist trichos between two families, Amoebidiidae and Eccrinidae (suborder Trichomycina, order Eccrinida). However, there is no comprehensive molecular phylogeny available for this group and major questions about the systematics of protist trichos remain unanswered. Therefore, we generated 18S and 28S rDNA sequences for 106 protist tricho samples and combined them with publicly available Eccrinida sequences for phylogenetic analyses. We also sequenced a conserved protein-coding gene (heat-shock 70 protein) to obtain a multigene data set. We conducted ancestral state reconstruction (ASR) and Bayesian tip-association significance test (BaTS) analyses by mapping six morphological and ecological characters onto the resulting phylogenetic trees. Our results demonstrate: (1) several ecological and morphological character states (habitat, host type, host stage at time of infestation, location within host, spore production, and growth form) are significantly correlated with the phylogeny, and (2) two additional protist tricho families should be incorporated into the taxonomy to reflect phylogenetic relationships. Our data suggest that an integrated strategy that combines morphological, ecological, and molecular characters is needed to further resolve and clarify the systematics of the Eccrinida.
Subject(s)
Biological Evolution , Fungi/classification , Mesomycetozoea/classification , Animals , Bayes Theorem , DNA, Ribosomal , Evolution, Molecular , Fungi/genetics , Mesomycetozoea/genetics , PhylogenyABSTRACT
BACKGROUND: Terrorism, disease outbreaks, and other natural disasters and mass casualty events have pushed health care and public health systems to identify and refine emergency preparedness protocols for disaster response. Ethical guidance, alongside legal and medical frameworks, are increasingly common components of disaster response plans. OBJECTIVES: To systematically review the prevalence and content of ethical guidance offered for disaster response, specifically around crisis standards of care (CSCs). SEARCH METHODS: We systematically indexed academic literature from PubMed, Google Scholar, and ISI Web of Science from 2012 to 2016. SELECTION CRITERIA: We searched for peer-reviewed articles that substantively engaged in discussion of ethical guidance for CSCs. DATA COLLECTION AND ANALYSIS: Researchers screened potential articles for identification and discussion of ethical issues in CSC planning. We categorized and cataloged ethical concepts and principles. MAIN RESULTS: Of 580 peer-reviewed articles mentioning ethics and CSCs or disaster planning, 38 (6%) met selection criteria. The systematic review of the CSC ethics literature since 2012 showed that authors were primarily focused on the ethical justifications for CSC (n = 20) as well as a need for ethics guidelines for implementing CSCs; the ethical justifications for triage (n = 19), both as to which criteria to use and the appropriate processes by which to employ triage; and international issues (n = 17). In addition to these areas of focus, the scholarly literature included discussion of a number of other ethical issues, including duty to care (n = 11), concepts of a duty to plan (n = 8), utilitarianism (n = 5), moral distress (n = 4), professional norms (n = 3), reciprocity (n = 2), allocation criteria (n = 4), equity (n = 4), research ethics (n = 2), duty to steward resources (n = 2), social utility and social worth (n = 2), and a number of others (n = 20). Although public health preparedness efforts have paid increasing attention to CSCs in recent years, CSC plans have rarely been implemented within the United States to date, although some components are common (e.g., triage is used in US emergency departments regularly). Conversely, countries outside the United States more commonly implement CSCs within a natural disaster or humanitarian crisis response, and may offer significant insight into ethics and disaster response for US-based practitioners. CONCLUSIONS: This systematic review identifies the most oft-used and -discussed ethical concepts and principles used in disaster planning around CSCs. Although discussion of more nuanced issues (e.g., health equity) are present, the majority of items substantively engaging in ethical discussion around disaster planning do so regarding triage and why ethics is needed in disaster response generally. Public health implications. A significant evolution in disaster planning has occurred within the past decade; ethical theories and frameworks have been put to work. For ethical guidance to be useful, it must be practical and implementable. Although high-level, abstract frameworks were once prevalent in disaster planning-especially in the early days of pandemic planning-concerns about the ethically difficult concept of CSCs pervade scholarly articles. Ethical norms must be clearly stated and justified and practical guidelines ought to follow from them. Ethical frameworks should guide clinical protocols, but this requires that ethical analysis clarifies what strategies to use to honor ethical commitments and achieve ethical objectives. Such implementation issues must be considered well ahead of a disaster. As governments and health care systems plan for mass casualty events, ethical guidance that is theoretically sound and practically useful can-and should-form an important foundation from which to build practical guidance for responding to disasters with morally appropriate means.
Subject(s)
Disaster Planning , Emergency Medical Services/methods , Standard of Care/ethics , Emergency Medical Services/ethics , Humans , TriageABSTRACT
BACKGROUND: Calmodulin (CaM) plays an important role in Ca(2+)-dependent signal transduction. Ca(2+) binding to CaM triggers a conformational change, forming a hydrophobic patch that is important for target protein recognition. CaM regulates a Ca(2+)-dependent inactivation process in store-operated Ca(2+) entry, by interacting Orai1. To understand the relationship between Ca(2+)-induced hydrophobicity and CaM/Orai interaction, chimera proteins constructed by exchanging EF-hands of CaM with those of Troponin C (TnC) are used as an informative probe to better understand the functionality of each EF-hand. RESULTS: ANS was used to assess the context of the induced hydrophobic surface on CaM and chimeras upon Ca(2+) binding. The exchanged EF-hands from TnC to CaM resulted in reduced hydrophobicity compared with wild-type CaM. ANS lifetime measurements indicated that there are two types of ANS molecules with rather distinct fluorescence lifetimes, each specifically corresponding to one lobe of CaM or chimeras. Thermodynamic studies indicated the interaction between CaM and a 24-residue peptide corresponding to the CaM-binding domain of Orail1 (Orai-CMBD) is a 1:2 CaM/Orai-CMBD binding, in which each peptide binding yields a similar enthalpy change (ΔH = -5.02 Ā± 0.13 kcal/mol) and binding affinity (K(a) = 8.92 Ā± 1.03 Ć 10(5) M(-1)). With the exchanged EF1 and EF2, the resulting chimeras noted as CaM(1TnC) and CaM(2TnC), displayed a two sequential binding mode with a one-order weaker binding affinity and lower ΔH than that of CaM, while CaM(3TnC) and CaM(4TnC) had similar binding thermodynamics as CaM. The dissociation rate constant for CaM/Orai-CMBD was determined to be 1.41 Ā± 0.08 s(-1) by rapid kinetics. Stern-Volmer plots of Orai-CMBD Trp76 indicated that the residue is located in a very hydrophobic environment but becomes more solvent accessible when EF1 and EF2 were exchanged. CONCLUSIONS: Using ANS dye to assess induced hydrophobicity showed that exchanging EFs for all Ca(2+)-bound chimeras impaired ANS fluorescence and/or binding affinity, consistent with general concepts about the inadequacy of hydrophobic exposure for chimeras. However, such ANS responses exhibited no correlation with the ability to interact with Orai-CMBD. Here, the model of 1:2 binding stoichiometry of CaM/Orai-CMBD established in solution supports the already published crystal structure.
Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Calmodulin/metabolism , EF Hand Motifs , Hydrophobic and Hydrophilic Interactions , Recombinant Fusion Proteins/metabolism , Troponin C/metabolism , Amino Acid Sequence , Calcium Channels/chemistry , Calmodulin/chemistry , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Solvents/chemistry , Thermodynamics , Troponin C/chemistryABSTRACT
Fungicides are moderately hydrophobic and have been detected in water and sediment, particularly in agricultural watersheds, but typically are not included in routine water quality monitoring efforts. This is despite their widespread use and frequent application to combat fungal pathogens. Whereas the efficacy of these compounds on fungal pathogens is well documented, little is known about their effects on nontarget fungi. This pilot study, a field survey in southwestern Idaho from April to December 2010 on four streams with varying pesticide inputs (two agricultural and two reference sites), was conducted to assess nontarget impact of fungicides on gut fungi, or trichomycetes. Tissues of larval black flies (Diptera: Simuliidae), hosts of gut fungi, were analyzed for pesticide accumulation. Fungicides were detected in hosts from streams within agricultural watersheds but were not detected in hosts from reference streams. Gut fungi from agricultural sites exhibited decreased percent infestation, density within the gut, and sporulation, and black fly tissues had elevated pesticide concentrations. Differences observed between the sites demonstrate a potential effect on this symbiotic system. Future research is needed to parse out the details of the complex biotic and abiotic relationships; however, these preliminary results indicate that impacts to nontarget organisms could have far-reaching consequences within aquatic ecosystems.
ABSTRACT
Improved sequencing technologies have profoundly altered global views of fungal diversity and evolution. High-throughput sequencing methods are critical for studying fungi due to the cryptic, symbiotic nature of many species, particularly those that are difficult to culture. However, the low coverage genome sequencing (LCGS) approach to phylogenomic inference has not been widely applied to fungi. Here we analyzed 171 Kickxellomycotina fungi using LCGS methods to obtain hundreds of marker genes for robust phylogenomic reconstruction. Additionally, we mined our LCGS data for a set of nine rDNA and protein coding genes to enable analyses across species for which no LCGS data were obtained. The main goals of this study were to: 1) evaluate the quality and utility of LCGS data for both phylogenetic reconstruction and functional annotation, 2) test relationships among clades of Kickxellomycotina, and 3) perform comparative functional analyses between clades to gain insight into putative trophic modes. In opposition to previous studies, our nine-gene analyses support two clades of arthropod gut dwelling species and suggest a possible single evolutionary event leading to this symbiotic lifestyle. Furthermore, we resolve the mycoparasitic Dimargaritales as the earliest diverging clade in the subphylum and find four major clades of Coemansia species. Finally, functional analyses illustrate clear variation in predicted carbohydrate active enzymes and secondary metabolites (SM) based on ecology, that is biotroph versus saprotroph. Saprotrophic Kickxellales broadly lack many known pectinase families compared with saprotrophic Mucoromycota and are depauperate for SM but have similar numbers of predicted chitinases as mycoparasitic.
Subject(s)
Arthropods , Fungi , Humans , Animals , Phylogeny , Fungi/genetics , Arthropods/genetics , Base Sequence , GenomeABSTRACT
Fungi have evolved over millions of years and their species diversity is predicted to be the second largest on the earth. Fungi have cross-kingdom interactions with many organisms that have mutually shaped their evolutionary trajectories. Zygomycete fungi hold a pivotal position in the fungal tree of life and provide important perspectives on the early evolution of fungi from aquatic to terrestrial environments. Phylogenomic analyses have found that zygomycete fungi diversified into two separate clades, the Mucoromycota which are frequently associated with plants and Zoopagomycota that are commonly animal-associated fungi. Genetic elements that contributed to the fitness and divergence of these lineages may have been shaped by the varied interactions these fungi have had with plants, animals, bacteria, and other microbes. To investigate this, we performed comparative genomic analyses of the two clades of zygomycetes in the context of Kingdom Fungi, benefiting from our generation of a new collection of zygomycete genomes, including nine produced for this study. We identified lineage-specific genomic content that may contribute to the disparate biology observed in these zygomycetes. Our findings include the discovery of undescribed diversity in CotH, a Mucormycosis pathogenicity factor, which was found in a broad set of zygomycetes. Reconciliation analysis identified multiple duplication events and an expansion of CotH copies throughout the Mucoromycotina, Mortierellomycotina, Neocallimastigomycota, and Basidiobolus lineages. A kingdom-level phylogenomic analysis also identified new evolutionary relationships within the subphyla of Mucoromycota and Zoopagomycota, including supporting the sister-clade relationship between Glomeromycotina and Mortierellomycotina and the placement of Basidiobolus as sister to other Zoopagomycota lineages.
Subject(s)
Glomeromycota , Mucormycosis , Animals , Mucormycosis/genetics , Fungi/genetics , Phylogeny , Glomeromycota/genetics , Plants/genetics , Genome, Fungal , Evolution, MolecularABSTRACT
The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
ABSTRACT
Metabarcoding is an important tool for understanding fungal communities. The internal transcribed spacer (ITS) rDNA is the accepted fungal barcode but has known problems. The large subunit (LSU) rDNA has also been used to investigate fungal communities but available LSU metabarcoding primers were mostly designed to target Dikarya (AscomycotaĀ +Ā Basidiomycota) with little attention to early diverging fungi (EDF). However, evidence from multiple studies suggests that EDF comprise a large portion of unknown diversity in community sampling. Here, we investigate how DNA marker choice and methodological biases impact recovery of EDF from environmental samples. We focused on one EDF lineage, Zoopagomycota, as an example. We evaluated three primer sets (ITS1F/ITS2, LROR/LR3, and LR3 paired with new primer LR22F) to amplify and sequence a Zoopagomycota mock community and a set of 146 environmental samples with Illumina MiSeq. We compared two taxonomy assignment methods and created an LSU reference database compatible with AMPtk software. The two taxonomy assignment methods recovered strikingly different communities of fungi and EDF. Target fragment length variation exacerbated PCR amplification biases and influenced downstream taxonomic assignments, but this effect was greater for EDF than Dikarya. To improve identification of LSU amplicons we performed phylogenetic reconstruction and illustrate the advantages of this critical tool for investigating identified and unidentified sequences. Our results suggest much of the EDF community may be missed or misidentified with "standard" metabarcoding approaches and modified techniques are needed to understand the role of these taxa in a broader ecological context.
Subject(s)
Fungi , Bias , DNA Primers/genetics , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fungi/genetics , PhylogenyABSTRACT
Fungi survive in diverse ecological niches by secreting proteins and other molecules into the environment to acquire food and interact with various biotic and abiotic stressors. Fungal secretome content is, therefore, believed to be tightly linked to fungal ecologies. We sampled 132 genomes from the early-diverging terrestrial fungal lineage zygomycetes (Mucoromycota and Zoopagomycota) and characterized their secretome composition. Our analyses revealed that phylogeny played an important role in shaping the secretome composition of zygomycete fungi with trophic mode contributing a smaller amount. Reconstruction of the evolution of secreted digestive enzymes revealed lineage-specific expansions, indicating that Mucoromycota and Zoopagomycota followed different trajectories early in their evolutionary history. We identified the presence of multiple pathogenicity-related proteins in the lineages known as saprotrophs, suggesting that either the ecologies of these fungi are incompletely known, and/or that these pathogenicity-related proteins have important functions associated with saprotrophic ecologies, both of which invite further investigation.
ABSTRACT
INTRODUCTION: Decreased fetal movement is a common concern late in pregnancy that may be associated with increased fetal morbidity and mortality. Limited research suggests a relationship between maternal psychological factors and perception of fetal movement. The goal of this study was to test the reliability and external validity of a novel self-report instrument for maternal mindful awareness of fetal movement. METHODS: Pregnant women who were at 20 weeks' gestation or later and feeling regular fetal movement (N = 497) were recruited online through a commercial pregnancy website to complete an internet survey from April to May 2016. The online survey included demographic and pregnancy characteristics, psychological and mindfulness measures, and investigator-developed items on mindful awareness of fetal movement. Reliability and validity of the instrument were tested with exploratory factor analysis, correlations with psychological variables, and hierarchical linear regression. RESULTS: Exploratory factor analysis of mindful awareness of fetal movement items using principal components analysis showed a 2-factor structure, noticing and distracted, with internal consistency of α equal to .69 and .57, respectively. Hierarchical multiple regression analysis showed that noticing was associated with increased gestational age, mindfulness (observing facet), and maternal-fetal attachment. Distracted was associated with increased education level and prenatal anxiety and with decreased mindfulness (nonjudging facet). DISCUSSION: There was moderate internal consistency in the items measuring mindful awareness of fetal movement. Findings suggest relationships between mindful awareness of fetal movement and state mindfulness, maternal-fetal attachment, and prenatal anxiety. More research is needed to further develop items for a mindful awareness of fetal movement scale suitable for research and clinical practice.
Subject(s)
Fetal Movement , Mindfulness , Adolescent , Adult , Factor Analysis, Statistical , Female , Gestational Age , Humans , Maternal-Fetal Relations , Middle Aged , Pregnancy , Reproducibility of Results , Young AdultABSTRACT
The Piptocephalidaceae (Zoopagales, Zoopagomycota) contains three genera of mycoparasitic, haustoria-forming fungi: Kuzuhaea, Piptocephalis, and Syncephalis. Although the species in this family are diverse and ubiquitous in soil and dung, they are among the least studied fungi. Co-cultures of Piptocephalis and their hosts are relatively easy to isolate from soil and dung samples across the globe, making them a good model taxon for the order Zoopagales. This study focuses on the systematics of the genus Piptocephalis. Despite the fact that there are approximately 40 described Piptocephalis species, there are no modern taxonomic or molecular phylogenetic treatments of this group. Minimal sequence data are available, and relatively little is known about the true diversity or biogeography of the genus. Our study addresses two aspects: Piptocephalis systematics and analyses of the length and inter- and infraspecific variation of the nuc rDNA internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) region. First, we generated a large subunit (28S) nuc rDNA phylogeny and evaluated several morphological characters by testing their correlation with the phylogeny using Bayesian Tip-association Significance testing (BaTS). We found monophyly of Piptocephalis species identified based on morphological traits, but morphological character states were not conserved across clades, suggesting that there have been multiple gains and losses of morphological characters. We also found that Kuzhuaea is nested within Piptocephalis. Second, we amplified the ITS from many Piptocephalis isolates, created a sequence alignment, and measured the lengths using the software ITSx. Piptocephalis species had ITS regions that were longer than the average for most Dikarya but were similar in length to those of the related genus Syncephalis.
Subject(s)
Fungi/classification , Fungi/genetics , Phylogeny , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fungi/isolation & purification , Genetic Variation , Phenotype , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNAABSTRACT
Environmental DNA surveys reveal that most fungal diversity represents uncultured species. We sequenced the genomes of eight uncultured species across the fungal tree of life using a new single-cell genomics pipeline. We show that, despite a large variation in genome and gene space recovery from each single amplified genome (SAG), ≥90% can be recovered by combining multiple SAGs. SAGs provide robust placement for early-diverging lineages and infer a diploid ancestor of fungi. Early-diverging fungi share metabolic deficiencies and show unique gene expansions correlated with parasitism and unculturability. Single-cell genomics holds great promise in exploring fungal diversity, life cycles and metabolic potential.
Subject(s)
Fungi/genetics , Fungi/metabolism , Genome, Fungal , Genomics , Biodiversity , DNA, Ribosomal/genetics , Fungi/classification , Fungi/enzymology , Genetic Variation , Heterozygote , Life Cycle Stages , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Phylogeny , Polymorphism, Genetic , RNA, Ribosomal, 18S/genetics , Secondary Metabolism/genetics , Secondary Metabolism/physiology , Sequence Analysis, DNA , Symbiosis/genetics , Symbiosis/physiologyABSTRACT
Four new species of Coemansia from Taiwan are described. Three produce spirally twisted sporangiophores, and these new taxa increase the number of species in the Coemansia spiralis complex from three to six. Each new taxon is morphologically unique. Coemansia biformis, sp. nov., has two different asexual reproductive types on the same thallus; one is straight and the other has a spiral fertile region. Coemansia helicoidea, sp. nov., has stoloniferous sporangiophores with a helicoid fertile region. Coemansia pennisetoides, sp. nov., has a sporangiophore with a fertile region that resembles the inflorescence of the plant genus Pennisetum. Coemansia umbellata, sp. nov., has an umbellate sporangiophore branching pattern and a spirally twisted fertile region on the lowest branches. A dichotomous key was provided to identify the 23 accepted Coemansia species. Phylogenetic analysis based on a combined data set of D1-D2 domains of nuc 28S ribosomal RNA (rDNA) and partial nuc 18S rDNA identifies several independent evolutionary lineages within Coemansia and suggests that Spirodactylon aureum and Kickxella alabastrina may be nested within the genus Coemansia. Sequences of nuc rDNA ITS1-5.8S-ITS2 (internal transcribed spacer [ITS] barcode) are also used to support the description of these new species of Coemansia.
Subject(s)
Fungi/classification , Fungi/isolation & purification , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Fungi/cytology , Fungi/genetics , Microscopy , Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , RNA, Ribosomal, 5.8S/genetics , Sequence Analysis, DNA , Soil Microbiology , TaiwanABSTRACT
We used gain-of-function and null synaptic signaling network mutants to investigate the relationship of the G alpha(q) and G alpha(s) pathways to synaptic vesicle priming and to each other. Genetic epistasis studies using G alpha(q) gain-of-function and null mutations, along with a mutation that blocks synaptic vesicle priming and the synaptic vesicle priming stimulator phorbol ester, suggest that the G alpha(q) pathway generates the core, obligatory signals for synaptic vesicle priming. In contrast, the G alpha(s) pathway is not required for the core priming function, because steady-state levels of neurotransmitter release are not significantly altered in animals lacking a neuronal G alpha(s) pathway, even though these animals are strongly paralyzed as a result of functional (nondevelopmental) defects. However, our genetic analysis indicates that these two functionally distinct pathways converge and that they do so downstream of DAG production. Further linking the two pathways, our epistasis analysis of a ric-8 null mutant suggests that RIC-8 (a receptor-independent G alpha guanine nucleotide exchange factor) is required to maintain both the G alpha(q) vesicle priming pathway and the neuronal G alpha(s) pathway in a functional state. We propose that the neuronal G alpha(s) pathway transduces critical positional information onto the core G alpha(q) pathway to stabilize the priming of selected synapses that are optimal for locomotion.
Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , GTP-Binding Proteins/metabolism , Helminth Proteins/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Synaptic Transmission/genetics , Animals , Caenorhabditis elegans Proteins/genetics , Epistasis, Genetic , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Guanine Nucleotide Exchange Factors , Helminth Proteins/genetics , Models, Biological , Mutation , Nuclear Proteins/genetics , TransgenesABSTRACT
To identify hypothesized missing components of the synaptic G alpha(o)-G alpha(q) signaling network, which tightly regulates neurotransmitter release, we undertook two large forward genetic screens in the model organism C. elegans and focused first on mutations that strongly rescue the paralysis of ric-8(md303) reduction-of-function mutants, previously shown to be defective in G alpha(q) pathway activation. Through high-resolution mapping followed by sequence analysis, we show that these mutations affect four genes. Two activate the G alpha(q) pathway through gain-of-function mutations in G alpha(q); however, all of the remaining mutations activate components of the G alpha(s) pathway, including G alpha(s), adenylyl cyclase, and protein kinase A. Pharmacological assays suggest that the G alpha(s) pathway-activating mutations increase steady-state neurotransmitter release, and the strongly impaired neurotransmitter release of ric-8(md303) mutants is rescued to greater than wild-type levels by the strongest G alpha(s) pathway activating mutations. Using transgene induction studies, we show that activating the G alpha(s) pathway in adult animals rapidly induces hyperactive locomotion and rapidly rescues the paralysis of the ric-8 mutant. Using cell-specific promoters we show that neuronal, but not muscle, G alpha(s) pathway activation is sufficient to rescue ric-8(md303)'s paralysis. Our results appear to link RIC-8 (synembryn) and a third major G alpha pathway, the G alpha(s) pathway, with the previously discovered G alpha(o) and G alpha(q) pathways of the synaptic signaling network.
Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , GTP-Binding Proteins/physiology , Helminth Proteins/physiology , Mutation , Nuclear Proteins/physiology , Signal Transduction , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , GTP-Binding Protein alpha Subunits, Gi-Go , GTP-Binding Proteins/genetics , Genes, Helminth , Genetic Complementation Test , Guanine Nucleotide Exchange Factors , Helminth Proteins/genetics , Models, Biological , Molecular Sequence Data , Nuclear Proteins/genetics , Promoter Regions, Genetic , Protein Structure, Tertiary , RNA Interference , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Synaptic Transmission/genetics , TransgenesABSTRACT
Cholecystokinin (CCK) is produced from pro CCK by a series of enzymatic cleavages. One of the enzymes thought to be important for pro CCK cleavage is prohormone convertase 5 (PC5). STC-1 cells, a mouse intestinal tumor cell line that expresses CCK, PC1, PC2, and PC5 were stably transfected with hairpin loop plasmids encoding siRNA targeting PC5 and clones were selected. CCK secretion was reduced significantly. PC5 mRNA and protein expression as measured by quantitative PCR and Western blot analysis was reduced about 50%. CCK and PC1 mRNA expression were not changed. These cells showed a three-fold increase in PC2 mRNA and protein expression. This increase may represent a compensatory mechanism triggered by the loss of PC5. The decrease in CCK in the media was due largely to loss of CCK 22. These results provide the first direct evidence that PC5 is involved in CCK processing.
Subject(s)
Cholecystokinin/metabolism , Gene Expression Regulation/drug effects , Proprotein Convertase 2/biosynthesis , Proprotein Convertase 2/genetics , Proprotein Convertase 5/biosynthesis , Animals , Cell Line, Tumor , Cholecystokinin/analysis , Culture Media, Conditioned/metabolism , Mice , Proprotein Convertase 5/genetics , RNA/genetics , RNA/metabolismABSTRACT
Two different RNAi methods were used to inhibit the expression of prohormone convertase 1 (PC1) in At-T20 cells. Transient transfection of double stranded RNA and stable expression of a vector expressing hairpin-loop RNA targeting PC1 reduced cholecystokinin (CCK) secretion from At-T20 cells. PC1 mRNA and protein were also decreased in the vector transfected cells. This treatment caused a shift in the forms of cholecystokinin (CCK) secreted, decreasing CCK 22 and increasing CCK 8. Stable expression of RNAi effectively decreased PC1 expression. The observed decrease in CCK seen with these RNAi treatments further supports a role for PC1 in CCK processing in these cells.
Subject(s)
Cholecystokinin/chemistry , Cholecystokinin/metabolism , Gene Expression , Proprotein Convertase 1/deficiency , Amino Acid Sequence , Animals , Cell Line , Gene Expression/drug effects , Mice , Molecular Sequence Data , Proprotein Convertase 1/biosynthesis , Proprotein Convertase 1/genetics , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RatsABSTRACT
Natural killer (NK) cell lines are useful for studying facets of NK cell biology. Such cell lines are notoriously difficult to transfect by traditional methods, a fact that has hampered NK cell biology studies for a long time. To overcome this, we investigated the use of the Amaxa nucleofection system that directly transfers DNA into the nucleus of the cell. This technology has revolutionized transfection studies with heretofore relatively transfection resistant cell types such as T cells, B cells and dendritic cells. Despite these advances, NK cells and NK cell lines have remained relatively resistant to transfection, including nucleofection. In this study we employed cDNA for SHP1 and various Rab proteins cloned in enhanced green/yellow fluorescent protein (EGFP/EYFP) expression plasmids for transient transfections into NKL cells. The expression of EGFP/EYFP fusion proteins was analyzed by flow cytometry, immunoblot and confocal microscopic analyses. We achieved 40-70% transfection efficiency with high levels of expression in this cell line with 85-90% viability. The method used in this report proves to be far superior to existing methods for delivering DNA into this well studied NK cell line and, consequently, provides new experimental opportunities.