Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nano Lett ; 22(1): 517-523, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34962401

ABSTRACT

We show a double-functional fluorescence sensing paradigm that can retrieve nanometric pH information on biological structures. We use this method to measure the extent of protonic condensation around microtubules, which are protein polymers that play many roles crucial to cell function. While microtubules are believed to have a profound impact on the local cytoplasmic pH, this has been hard to show experimentally due to the limitations of conventional sensing techniques. We show that subtle changes in the local electrochemical surroundings cause a double-functional sensor to transform its spectrum, thus allowing a direct measurement of the protonic concentration at the microtubule surface. Microtubules concentrate protons by as much as one unit on the pH scale, indicating a charge storage role within the cell via the localized ionic condensation. These results confirm the bioelectrical significance of microtubules and reveal a sensing concept that can deliver localized biochemical information on intracellular structures.


Subject(s)
Microtubules , Protons , Biophysics , Cytoplasm/physiology , Hydrogen-Ion Concentration , Microtubules/metabolism
2.
Small ; 17(1): e2003560, 2021 01.
Article in English | MEDLINE | ID: mdl-33295102

ABSTRACT

Tubulin is an electrostatically negative protein that forms cylindrical polymers termed microtubules, which are crucial for a variety of intracellular roles. Exploiting the electrostatic behavior of tubulin and microtubules within functional microfluidic and optoelectronic devices is limited due to the lack of understanding of tubulin behavior as a function of solvent composition. This work displays the tunability of tubulin surface charge using dimethyl sulfoxide (DMSO) for the first time. Increasing the DMSO volume fractions leads to the lowering of tubulin's negative surface charge, eventually causing it to become positive in solutions >80% DMSO. As determined by electrophoretic mobility measurements, this change in surface charge is directionally reversible, i.e., permitting control between -1.5 and + 0.2Ā cm2 Ā (VĀ s)-1 . When usually negative microtubules are exposed to these conditions, the positively charged tubulin forms tubulin sheets and aggregates, as revealed by an electrophoretic transport assay. Fluorescence-based experiments also indicate that tubulin sheets and aggregates colocalize with negatively charged g-C3 N4 sheets while microtubules do not, further verifying the presence of a positive surface charge. This study illustrates that tubulin and its polymers, in addition to being mechanically robust, are also electrically tunable.


Subject(s)
Polymers , Tubulin , Microtubules , Static Electricity
3.
Proteins ; : e25993, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32779779

ABSTRACT

This article reports on the results of research aimed to translate biometric 3D face recognition concepts and algorithms into the field of protein biophysics in order to precisely and rapidly classify morphological features of protein surfaces. Both human faces and protein surfaces are free-forms and some descriptors used in differential geometry can be used to describe them applying the principles of feature extraction developed for computer vision and pattern recognition. The first part of this study focused on building the protein dataset using a simulation tool and performing feature extraction using novel geometrical descriptors. The second part tested the method on two examples, first involved a classification of tubulin isotypes and the second compared tubulin with the FtsZ protein, which is its bacterial analog. An additional test involved several unrelated proteins. Different classification methodologies have been used: a classic approach with a support vector machine (SVM) classifier and an unsupervised learning with a k-means approach. The best result was obtained with SVM and the radial basis function kernel. The results are significant and competitive with the state-of-the-art protein classification methods. This leads to a new methodological direction in protein structure analysis.

4.
Theor Biol Med Model ; 13: 9, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26939615

ABSTRACT

BACKGROUND: One of the major issues in current pharmaceutical development is potential hepatotoxicity and drug-induced liver damage. This is due to the unique metabolic processes performed in the liver to prevent accumulation of a wide range of chemicals in the blood. Recently, we developed a physiologically-based lattice model to address the transport and metabolism of drugs in the liver lobule (liver functional unit). METHOD: In this paper, we extend our idealized model to consider structural and spatial variability in two and three dimensions. We introduce a hexagonal-based model with one input (portal vein) and six outputs (hepatic veins) to represent a typical liver lobule. To capture even more realistic structures, we implement a novel sequential diffusion-limited aggregation (DLA) method to construct a morphological sinusoid network in the lobule. A 3D model constructed with stacks of multiple 2D sinusoid realizations is explored to study the effects of 3D structural variations. The role of liver zonation on drug metabolism in the lobule is also addressed, based on flow-based predicted steady-state O2 profiles used as a zonation indicator. RESULTS: With this model, we analyze predicted drug concentration levels observed exiting the lobule with their detailed distribution inside the lobule, and compare with our earlier idealized models. In 2D, due to randomness of the sinusoidal structure, individual hepatic veins respond differently (i.e. at different times) to injected drug. In 3D, however, the variation of response to the injected drug is observed to be less extreme. Also, the production curves show more diffusive behavior in 3D than in 2D. CONCLUSION: Although, the individual producing ports respond differently, the average lobule production summed over all hepatic veins is more diffuse. Thus the net effect of all these variations makes the overall response smoother. We also show that, in 3D, the effect of zonation on drug production characteristics appears quite small. Our new biophysical structural analysis of a physiologically-based 3D lobule can therefore form the basis for a quantitative assessment of liver function and performance both in health and disease.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Liver/drug effects , Algorithms , Antineoplastic Agents/adverse effects , Biological Transport , Chemical and Drug Induced Liver Injury/physiopathology , Computer Simulation , Diffusion , Humans , Inactivation, Metabolic , Liver/metabolism , Neoplasms/drug therapy , Oxygen/chemistry , Pharmaceutical Preparations
5.
Theor Biol Med Model ; 10: 52, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-24007328

ABSTRACT

We develop a physiologically-based lattice model for the transport and metabolism of drugs in the functional unit of the liver, called the lobule. In contrast to earlier studies, we have emphasized the dominant role of convection in well-vascularized tissue with a given structure. Estimates of convective, diffusive and reaction contributions are given. We have compared drug concentration levels observed exiting the lobule with their predicted detailed distribution inside the lobule, assuming that most often the former is accessible information while the latter is not.


Subject(s)
Liver/metabolism , Models, Biological , Pharmaceutical Preparations/metabolism , Rheology , Diffusion , Humans , Inactivation, Metabolic , Kinetics , Liver/anatomy & histology , Paclitaxel/metabolism , Paclitaxel/pharmacokinetics
6.
Theor Biol Med Model ; 10: 53, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-24007357

ABSTRACT

We extend a physiologically-based lattice model for the transport and metabolism of drugs in the liver lobule (liver functional unit) to consider structural and spatial variability. We compare predicted drug concentration levels observed exiting the lobule with their detailed distribution inside the lobule, and indicate the role that structural variation has on these results. Liver zonation and its role on drug metabolism represent another aspect of structural inhomogeneity that we consider here. Since various liver diseases can be thought to produce such structural variations, our analysis gives insight into the role of disease on liver function and performance. These conclusions are based on the dominant role of convection in well-vascularized tissue with a given structure.


Subject(s)
Liver/metabolism , Models, Biological , Pharmaceutical Preparations/metabolism , Rheology , Biological Transport , Cytochrome P-450 Enzyme System/metabolism , Diffusion , Fractals , Humans , Inactivation, Metabolic , Kinetics , Liver/anatomy & histology , Metabolome , Paclitaxel/metabolism , Paclitaxel/pharmacokinetics , Permeability , Water
7.
Phys Biol ; 8(5): 056004, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21836336

ABSTRACT

We propose a stochastic model that accounts for the growth, catastrophe and rescue processes of steady-state microtubules assembled from MAP-free tubulin in the possible presence of a microtubule-associated drug. As an example of the latter, we both experimentally and theoretically study the perturbation of microtubule dynamic instability by S-methyl-D-DM1, a synthetic derivative of the microtubule-targeted agent maytansine and a potential anticancer agent. Our model predicts that among the drugs that act locally at the microtubule tip, primary inhibition of the loss of GDP tubulin results in stronger damping of microtubule dynamics than inhibition of GTP tubulin addition. On the other hand, drugs whose action occurs in the interior of the microtubule need to be present in much higher concentrations to have visible effects.


Subject(s)
Antineoplastic Agents/pharmacology , Maytansine/analogs & derivatives , Microtubules/drug effects , Animals , Antineoplastic Agents/metabolism , Binding Sites , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Kinetics , Maytansine/metabolism , Maytansine/pharmacology , Microtubules/metabolism , Protein Binding , Sea Urchins , Stochastic Processes , Tubulin/metabolism
8.
Front Mol Biosci ; 8: 650757, 2021.
Article in English | MEDLINE | ID: mdl-33842549

ABSTRACT

Microtubules are highly negatively charged proteins which have been shown to behave as bio-nanowires capable of conducting ionic currents. The electrical characteristics of microtubules are highly complicated and have been the subject of previous work; however, the impact of the ionic concentration of the buffer solution on microtubule electrical properties has often been overlooked. In this work we use the non-linear Poisson Boltzmann equation, modified to account for a variable permittivity and a Stern Layer, to calculate counterion concentration profiles as a function of the ionic concentration of the buffer. We find that for low-concentration buffers ([KCl] from 10 ĀµM to 10 mM) the counterion concentration is largely independent of the buffer's ionic concentration, but for physiological-concentration buffers ([KCl] from 100 to 500 mM) the counterion concentration varies dramatically with changes in the buffer's ionic concentration. We then calculate the conductivity of microtubule-counterion complexes, which are found to be more conductive than the buffer when the buffer's ionic concentrations is less than ≈100 mM and less conductive otherwise. These results demonstrate the importance of accounting for the ionic concentration of the buffer when analyzing microtubule electrical properties both under laboratory and physiological conditions. We conclude by calculating the basic electrical parameters of microtubules over a range of ionic buffer concentrations applicable to nanodevice and medical applications.

9.
J Funct Biomater ; 11(1)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121053

ABSTRACT

Tissue engineering, with the goal of repairing or replacing damaged tissue and organs, has continued to make dramatic science-based advances since its origins in the late 1980's and early 1990's. Such advances are always multi-disciplinary in nature, from basic biology and chemistry through physics and mathematics to various engineering and computer fields. This review will focus its attention on two topics critical for tissue engineering liver development: (a) fluid flow, zonation, and drug screening, and (b) biomechanics, tissue stiffness, and fibrosis, all within the context of 3D structures. First, a general overview of various bioreactor designs developed to investigate fluid transport and tissue biomechanics is given. This includes a mention of computational fluid dynamic methods used to optimize and validate these designs. Thereafter, the perspective provided by computer simulations of flow, reactive transport, and biomechanics responses at the scale of the liver lobule and liver tissue is outlined, in addition to how bioreactor-measured properties can be utilized in these models. Here, the fundamental issues of tortuosity and upscaling are highlighted, as well as the role of disease and fibrosis in these issues. Some idealized simulations of the effects of fibrosis on lobule drug transport and mechanics responses are provided to further illustrate these concepts. This review concludes with an outline of some practical applications of tissue engineering advances and how efficient computational upscaling techniques, such as dual continuum modeling, might be used to quantify the transition of bioreactor results to the full liver scale.

10.
ACS Nano ; 14(12): 16301-16320, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33213135

ABSTRACT

Microtubules are hollow, cylindrical polymers of the protein α, Ɵ tubulin, that interact mechanochemically with a variety of macromolecules. Due to their mechanically robust nature, microtubules have gained attention as tracks for precisely directed transport of nanomaterials within lab-on-a-chip devices. Primarily due to the unusually negative tail-like C-termini of tubulin, recent work demonstrates that these biopolymers are also involved in a broad spectrum of intracellular electrical signaling. Microtubules and their electrostatic properties are discussed in this Review, followed by an evaluation of how these biopolymers respond mechanically to electrical stimuli, through microtubule migration, electrorotation and C-termini conformation changes. Literature focusing on how microtubules act as nanowires capable of intracellular ionic transport, charge storage, and ionic signal amplification is reviewed, illustrating how these biopolymers attenuate ionic movement in response to electrical stimuli. The Review ends with a discussion on the important questions, challenges, and future opportunities for intracellular microtubule-based electrical signaling.

11.
Nanomaterials (Basel) ; 10(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033331

ABSTRACT

Microtubules are hollow cylindrical polymers composed of the highly negatively-charged (~23e), high dipole moment (1750 D) protein α, Ɵ- tubulin. While the roles of microtubules in chromosomal segregation, macromolecular transport, and cell migration are relatively well-understood, studies on the electrical properties of microtubules have only recently gained strong interest. Here, we show that while microtubules at physiological concentrations increase solution capacitance, free tubulin has no appreciable effect. Further, we observed a decrease in electrical resistance of solution, with charge transport peaking between 20-60 Hz in the presence of microtubules, consistent with recent findings that microtubules exhibit electric oscillations at such low frequencies. We were able to quantify the capacitance and resistance of the microtubules (MT) network at physiological tubulin concentrations to be 1.27 Ɨ 10-5 F and 9.74 Ɨ 104 Ω. Our results show that in addition to macromolecular transport, microtubules also act as charge storage devices through counterionic condensation across a broad frequency spectrum. We conclude with a hypothesis of an electrically tunable cytoskeleton where the dielectric properties of tubulin are polymerisation-state dependent.

12.
Nanoscale Adv ; 1(9): 3364-3371, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133560

ABSTRACT

α, Ɵ-tubulin is a cytoskeletal protein that forms cylindrical structures termed microtubules, which are crucial to the cell for a variety of roles. Microtubules are frequently modelled as one-dimensional bionanowires that act as ion transporters in the cell. In this work, we used dynamic light scattering (DLS) to measure the hydrodynamic diameter of tubulin in the presence of a polar aprotic co-solvent. We found that the hydrodynamic diameter increased with increasing DMSO volume fraction, almost doubling at 20% DMSO. To evaluate if this was due to an enlarged solvation shell, we performed reference interaction site model (RISM) simulations and found that the extent of solvation was unchanged. Using fluorescence microscopy, we then showed that tubulin was polymerization competent in the presence of colchicine, and thus inferred the presence of oligomers in the presence of DMSO, which points to its mechanism of action as a microtubule polymerization enhancing agent. Tubulin oligomers are known to form when microtubules depolymerize and are controversially implicated in microtubule polymerization. We show that DLS may be used to monitor early-state microtubule polymerization and is a viable alternative to fluorescence and electron microscopy-based methods. Our findings showing that DMSO causes tubulin oligomerization are thus of critical importance, both for creating bio-inspired nanotechnology and determining its biophysical roles in the cell.

13.
Biophys J ; 95(4): 1993-2008, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18502790

ABSTRACT

Numerous isotypes of the structural protein tubulin have now been characterized in various organisms and their expression offers a plausible explanation for observed differences affecting microtubule function in vivo. While this is an attractive hypothesis, there are only a handful of studies demonstrating a direct influence of tubulin isotype composition on the dynamic properties of microtubules. Here, we present the results of experimental assays on the assembly of microtubules from bovine brain tubulin using purified isotypes at various controlled relative concentrations. A novel data analysis is developed using recursive maps which are shown to be related to the master equation formalism. We have found striking similarities between the three isotypes of bovine tubulin studied in regard to their dynamic instability properties, except for subtle differences in their catastrophe frequencies. When mixtures of tubulin isotypes are analyzed, their nonlinear concentration dependence is modeled and interpreted in terms of lower affinities of tubulin dimers belonging to the same isotype than those that represent different isotypes indicating hitherto unsuspected influences of tubulin dimers on each other within a microtubule. Finally, we investigate the fluctuations in microtubule assembly and disassembly rates and conclude that the inherent rate variability may signify differences in the guanosine-5'-triphosphate composition of the growing and shortening microtubule tips. It is the main objective of this article to develop a quantitative model of tubulin polymerization for individual isotypes and their mixtures. The possible biological significance of the observed differences is addressed.


Subject(s)
Microtubules/chemistry , Microtubules/ultrastructure , Models, Chemical , Models, Molecular , Tubulin/chemistry , Tubulin/ultrastructure , Complex Mixtures/chemistry , Computer Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Protein Conformation
14.
BMC Syst Biol ; 12(Suppl 6): 112, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30463571

ABSTRACT

BACKGROUND: Recent research has found that abnormal functioning of Microtubules (MTs) could be linked to fatal diseases such as Alzheimer's. Hence, there is an imminent need to understand the implications of MTs for disease- diagnosis. However, studies of cellular processes like MTs are often constrained by physical limitations of their data acquisition systems such as optical microscopes and are vulnerable to either destruction of the specimen or the probe. In addition, study of MTs is challenged with non-uniform sampling of the MT dynamic instability phenomenon relative to its time-lapse observation of the cellular processes. Thus, the above caveats limit the overall period of time that the MT data can be collected, thereby causing limited data availability scenario. RESULTS: In this work, two novel superresolution frameworks based on Expectation Maximization (EM) based Maximum Likelihood (ML) estimation using Kalman filters (MLK) technique are proposed to address the issues of non-uniform sampling and limited data availability of MT signals. The proposed MLK methods optimizes prediction of missing observations in the MT signal through information extraction using correlation-based patch processing and principal component analysis -based mutual information. Experimental results prove that the proposed MLK-based superresolution methods outperformed nonlinear interpolation and compressed sensing methods. CONCLUSIONS: This work aims to address limited data availability and data/observation loss incurred due to non-uniform sampling of biological signals such as MTs. For this purpose, statistical modelling of stochastic MT signals using EM based ML driven Kalman estimation (MLK) is considered as a fundamental framework for prediction of missing MT observations. It was experimentally validated that the proposed superresolution methods provided superior overall performance, better MT signal estimation using fewer samples, high SNR, low errors, and better MT parameter estimation than other methods.


Subject(s)
Computational Biology/methods , Microtubules/metabolism , Likelihood Functions , Models, Biological , Stochastic Processes
15.
16.
Phys Biol ; 4(4): 256-67, 2007 Nov 21.
Article in English | MEDLINE | ID: mdl-18185004

ABSTRACT

Surviving in a diverse environment requires corresponding organism responses. At the cellular level, such adjustment relies on the transcription factors (TFs) which must rapidly find their target sequences amidst a vast amount of non-relevant sequences on DNA molecules. Whether these transcription factors locate their target sites through a 1D or 3D pathway is still a matter of speculation. It has been suggested that the optimum search time is when the protein equally shares its search time between 1D and 3D diffusions. In this paper, we study the above problem using Monte Carlo simulations by considering a simple physical model. A 1D strip, representing a DNA, with a number of low affinity sites, corresponding to non-target sites, and high affinity sites, corresponding to target sites, is considered and later extended to a 2D strip. We study the 1D and 3D exploration pathways, and combinations thereof by considering three different types of molecules: a walker that randomly walks along the strip with no dissociation; a jumper that represents dissociation and then re-association of a TF with the strip at later time at a distant site; and a hopper that is similar to the jumper but it dissociates and then re-associates at a faster rate than the jumper. We analyze the final probability distribution of molecules for each case and find that TFs can locate their targets on the experimental time scale even if they spend only 15% of their search time diffusing freely in the solution. This agrees with recent experimental results obtained by Elf et al (2007 Science 316 1191) and is in contrast to previously reported theoretical predictions. Our results also agree with the experimental evidence for the role of chaperons and proteasomes in stabilizing and destabilizing TFs binding, respectively, during the regulation process. Therefore, the results of our manuscript can provide a refined theoretical framework for the process.


Subject(s)
Biophysics/methods , DNA/chemistry , Transcription Factors/metabolism , Algorithms , Binding Sites , Computer Simulation , Diffusion , Humans , Models, Statistical , Monte Carlo Method , Probability , Software , Time Factors
17.
Sci Rep ; 7(1): 9594, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851923

ABSTRACT

Microtubules (MTs), which are cylindrical protein filaments that play crucial roles in eukaryotic cell functions, have been implicated in electrical signalling as biological nanowires. We report on the small-signal AC ("alternating current") conductance of electrolytic solutions containing MTs and tubulin dimers, using a microelectrode system. We find that MTs (212 nM tubulin) in a 20-fold diluted BRB80 electrolyte increase solution conductance by 23% at 100 kHz, and this effect is directly proportional to the concentration of MTs in solution. The frequency response of MT-containing electrolytes exhibits a concentration-independent peak in the conductance spectrum at 111 kHz (503 kHz FWHM that decreases linearly with MT concentration), which appears to be an intrinsic property of MT ensembles in aqueous environments. Conversely, tubulin dimers (42 nM) decrease solution conductance by 5% at 100 kHz under similar conditions. We attribute these effects primarily to changes in the mobility of ionic species due to counter-ion condensation effects, and changes in the solvent structure and solvation dynamics. These results provide insight into MTs' ability to modulate the conductance of aqueous electrolytes, which in turn, has significant implications for biological information processing, especially in neurons, and for intracellular electrical communication in general.

18.
PLoS One ; 11(9): e0162215, 2016.
Article in English | MEDLINE | ID: mdl-27649537

ABSTRACT

In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver.


Subject(s)
Liver Circulation , Liver/blood supply , Liver/metabolism , Pharmaceutical Preparations/metabolism , Algorithms , Animals , Computer Simulation , Dogs , Hemodynamics , Humans , Liver/anatomy & histology , Models, Anatomic , Models, Biological
19.
Comput Biol Med ; 65: 25-33, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26275388

ABSTRACT

Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters.


Subject(s)
Microtubules/chemistry , Models, Chemical
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(5 Pt 1): 051912, 2010 May.
Article in English | MEDLINE | ID: mdl-20866266

ABSTRACT

It has been suggested that microtubules and other cytoskeletal filaments may act as electrical transmission lines. An electrical circuit model of the microtubule is constructed incorporating features of its cylindrical structure with nanopores in its walls. This model is used to study how ionic conductance along the lumen is affected by flux through the nanopores, both with and without an external potential applied across its two ends. Based on the results of Brownian dynamics simulations, the nanopores were found to have asymmetric inner and outer conductances, manifested as nonlinear IV curves. Our simulations indicate that a combination of this asymmetry and an internal voltage source arising from the motion of the C-terminal tails causes cations to be pumped across the microtubule wall and propagate in both directions down the microtubule through the lumen, returning to the bulk solution through its open ends. This effect is demonstrated to add directly to the longitudinal current through the lumen resulting from an external voltage source applied across the two ends of the microtubule. The predicted persistent currents directed through the microtubule wall and along the lumen could be significant in directing the dissipation of weak, endogenous potential gradients toward one end of the microtubule within the cellular environment.


Subject(s)
Ions , Microtubules/chemistry , Nanopores , Animals , Anions , Biophysics/methods , Cations , Computer Simulation , Cytoskeleton/metabolism , Electrochemistry/methods , Humans , Neurons/metabolism , Phosphorylation , Protein Conformation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL