Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Publication year range
1.
Psychol Med ; 53(4): 1151-1165, 2023 03.
Article in English | MEDLINE | ID: mdl-34253268

ABSTRACT

BACKGROUND: For a century, psychedelics have been investigated as models of psychosis for demonstrating phenomenological similarities with psychotic experiences and as therapeutic models for treating depression, anxiety, and substance use disorders. This study sought to explore this paradoxical relationship connecting key parameters of the psychotic experience, psychotherapy, and psychedelic experience. METHODS: In a randomized, double-blind, placebo-controlled, crossover design, 24 healthy volunteers received 50 µg d-lysergic acid diethylamide (LSD) or inactive placebo. Psychotic experience was assessed by aberrant salience (Aberrant Salience Inventory, ASI), therapeutic potential by suggestibility (Creative Imagination Scale, CIS) and mindfulness (Five Facet Mindfulness Questionnaire, FFMQ; Mindful Attention Awareness Scale, MAAS; Experiences Questionnaire, EQ), and psychedelic experience by four questionnaires (Altered State of Consciousness Questionnaire, ASC; Mystical Experiences Questionnaire, MEQ; Challenging Experiences Questionnaire, CEQ; Ego-Dissolution Inventory, EDI). Relationships between LSD-induced effects were examined. RESULTS: LSD induced psychedelic experiences, including alteration of consciousness, mystical experiences, ego-dissolution, and mildly challenging experiences, increased aberrant salience and suggestibility, but not mindfulness. LSD-induced aberrant salience correlated highly with complex imagery, mystical experiences, and ego-dissolution. LSD-induced suggestibility correlated with no other effects. Individual mindfulness changes correlated with aspects of aberrant salience and psychedelic experience. CONCLUSIONS: The LSD state resembles a psychotic experience and offers a tool for healing. The link between psychosis model and therapeutic model seems to lie in mystical experiences. The results point to the importance of meaning attribution for the LSD psychosis model and indicate that psychedelic-assisted therapy might benefit from therapeutic suggestions fostering mystical experiences.


Subject(s)
Hallucinogens , Psychotic Disorders , Humans , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/therapeutic use , Anger , Anxiety , Psychotic Disorders/drug therapy
2.
Neuroimage ; 264: 119690, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36261058

ABSTRACT

The 'day residue' - the presence of waking memories into dreams - is a century-old concept that remains controversial in neuroscience. Even at the psychological level, it remains unclear how waking imagery cedes into dreams. Are visual and affective residues enhanced, modified, or erased at sleep onset? Are they linked, or dissociated? What are the neural correlates of these transformations? To address these questions we combined quantitative semantics, sleep EEG markers, visual stimulation, and multiple awakenings to investigate visual and affect residues in hypnagogic imagery at sleep onset. Healthy adults were repeatedly stimulated with an affective image, allowed to sleep and awoken seconds to minutes later, during waking (WK), N1 or N2 sleep stages. 'Image Residue' was objectively defined as the formal semantic similarity between oral reports describing the last image visualized before closing the eyes ('ground image'), and oral reports of subsequent visual imagery ('hypnagogic imagery). Similarly, 'Affect Residue' measured the proximity of affective valences between 'ground image' and 'hypnagogic imagery'. We then compared these grounded measures of two distinct aspects of the 'day residue', calculated within participants, to randomly generated values calculated across participants. The results show that Image Residue persisted throughout the transition to sleep, increasing during N1 in proportion to the time spent in this stage. In contrast, the Affect Residue was gradually neutralized as sleep progressed, decreasing in proportion to the time spent in N1 and reaching a minimum during N2. EEG power in the theta band (4.5-6.5 Hz) was inversely correlated with the Image Residue during N1. The results show that the visual and affective aspects of the 'day residue' in hypnagogic imagery diverge at sleep onset, possibly decoupling visual contents from strong negative emotions, in association with increased theta rhythm.


Subject(s)
Sleep Stages , Sleep , Adult , Humans , Sleep Stages/physiology , Wakefulness/physiology , Theta Rhythm , Electroencephalography
3.
Exp Brain Res ; 240(10): 2569-2580, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35947168

ABSTRACT

At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue. While such invasive devices provide the highest amount of usable neural activity for BMI control, they also involve direct damage to the nervous tissue. In the cerebral cortex, high levels of the enzyme NADPH diaphorase (NADPH-d) characterize a particular class of interneurons that regulates neuronal excitability and blood supply. To gain insight into the biocompatibility of invasive BMI, we assessed the impact of chronic implanted tungsten multielectrode bundles on the distribution and morphology of NADPH-d-reactive neurons in the rat frontal cortex. NADPH-d neuronal labeling was correlated with glial response markers and with indices of healthy neuronal activity measured by electrophysiological recordings performed up to 3 months after multielectrode implantation. Chronic electrode arrays caused a small and quite localized structural disturbance on the implanted site, with neuronal loss and glial activation circumscribed to the site of implant. Electrodes remained viable during the entire period of implantation. Moreover, neither the distribution nor the morphology of NADPH-d neurons was altered. Overall, our findings provide additional evidence that tungsten multielectrodes can be employed as a viable element for long-lasting therapeutic BMI applications.


Subject(s)
NADPH Dehydrogenase , Tungsten , Animals , Frontal Lobe , Humans , Microelectrodes , NADP , NADPH Dehydrogenase/metabolism , Neurons/metabolism , Paralysis , Rats
4.
Conscious Cogn ; 87: 103070, 2021 01.
Article in English | MEDLINE | ID: mdl-33307427

ABSTRACT

Serotonergic psychedelics have been suggested to mirror certain aspects of psychosis, and, more generally, elicit a state of consciousness underpinned by increased entropy of on-going neural activity. We investigated the hypothesis that language produced under the effects of lysergic acid diethylamide (LSD) should exhibit increased entropy and reduced semantic coherence. Computational analysis of interviews conducted at two different time points after 75 µg of intravenous LSD verified this prediction. Non-semantic analysis of speech organization revealed increased verbosity and a reduced lexicon, changes that are more similar to those observed during manic psychoses than in schizophrenia, which was confirmed by direct comparison with reference samples. Importantly, features related to language organization allowed machine learning classifiers to identify speech under LSD with accuracy comparable to that obtained by examining semantic content. These results constitute a quantitative and objective characterization of disorganized natural speech as a landmark feature of the psychedelic state.


Subject(s)
Hallucinogens , Lysergic Acid Diethylamide , Entropy , Hallucinogens/pharmacology , Humans , Language , Lysergic Acid Diethylamide/pharmacology , Tongue
5.
BMC Dev Biol ; 19(1): 3, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30841924

ABSTRACT

BACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.


Subject(s)
Brain/cytology , Brain/growth & development , Organ Culture Techniques/methods , Organoids/growth & development , Stress, Physiological/physiology , Cell Line , Humans , Hydrodynamics , Organoids/cytology , Shear Strength/physiology
6.
Neurobiol Learn Mem ; 160: 32-47, 2019 04.
Article in English | MEDLINE | ID: mdl-30321652

ABSTRACT

The brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings - and therefore the theories - are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidation.


Subject(s)
Brain/physiology , Computer Simulation , Homeostasis/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Memory Consolidation/physiology , Models, Theoretical , Sleep Stages/physiology , Humans
7.
Neurobiol Learn Mem ; 161: 122-134, 2019 05.
Article in English | MEDLINE | ID: mdl-30965113

ABSTRACT

A clue to hippocampal function has been the discovery of place cells, leading to the 'spatial map' theory. Although the firing attributes of place cells are well documented, little is known about the organization of the spatial map. Unit recording studies, thus far, have reported a low coherence between neighboring cells and geometric space, leading to the prevalent view that the spatial map is not topographically organized. However, the number of simultaneously recorded units is severely limited, rendering construction of the spatial map nearly impossible. To visualize the functional organization of place cells, we used the activity-dependent immediate-early gene Zif268 in combination with behavioral, pharmacological and electrophysiological methods, in mice and rats exploring an environment. Here, we show that in animals confined to a small part of a maze, principal cells in the CA1/CA3 subfields of the dorsal hippocampus immunoreactive (IR) for Zif268 adhere to a 'cluster-type' organization. Unit recordings confirmed that the Zif268 IR clusters correspond to active place cells, while blockade of NMDAR (which alters place fields) disrupted the Zif268 IR clusters. Contrary to the prevalent view that the spatial map consists of a non-topographic neural network, our results provide evidence for a 'cluster-type' functional organization of hippocampal neurons encoding for space.


Subject(s)
CA1 Region, Hippocampal , CA3 Region, Hippocampal , Early Growth Response Protein 1/metabolism , Maze Learning/physiology , Nerve Net , Place Cells , Space Perception/physiology , Animals , Behavior, Animal/physiology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/physiology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/metabolism , Nerve Net/physiology , Place Cells/cytology , Place Cells/metabolism , Place Cells/physiology , Rats , Rats, Long-Evans , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
8.
Phys Rev Lett ; 122(20): 208101, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31172737

ABSTRACT

Since the first measurements of neuronal avalanches, the critical brain hypothesis has gained traction. However, if the brain is critical, what is the phase transition? For several decades, it has been known that the cerebral cortex operates in a diversity of regimes, ranging from highly synchronous states (with higher spiking variability) to desynchronized states (with lower spiking variability). Here, using both new and publicly available data, we test independent signatures of criticality and show that a phase transition occurs in an intermediate value of spiking variability, in both anesthetized and freely moving animals. The critical exponents point to a universality class different from mean-field directed percolation. Importantly, as the cortex hovers around this critical point, the avalanche exponents follow a linear relation that encompasses previous experimental results from different setups and is reproduced by a model.

9.
Cell Mol Life Sci ; 75(20): 3715-3740, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30054638

ABSTRACT

Once viewed as a passive physiological state, sleep is a heterogeneous and complex sequence of brain states with essential effects on synaptic plasticity and neuronal functioning. Rapid-eye-movement (REM) sleep has been shown to promote calcium-dependent plasticity in principal neurons of the cerebral cortex, both during memory consolidation in adults and during post-natal development. This article reviews the plasticity mechanisms triggered by REM sleep, with a focus on the emerging role of kinases and immediate-early genes for the progressive corticalization of hippocampus-dependent memories. The body of evidence suggests that memory corticalization triggered by REM sleep is a systemic phenomenon with cellular and molecular causes.


Subject(s)
Memory Consolidation/physiology , Sleep, REM/physiology , Animals , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Hippocampus/metabolism , Humans , Neuronal Plasticity , Receptors, Neurotransmitter/metabolism , Synapses/metabolism
10.
J Neurosci ; 37(33): 8003-8013, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28729438

ABSTRACT

It is widely accepted that cortical neurons are similarly more activated during waking and paradoxical sleep (PS; aka REM) than during slow-wave sleep (SWS). However, we recently reported using Fos labeling that only a few limbic cortical structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) contain a large number of neurons activated during PS hypersomnia. Our aim in the present study was to record local field potentials and unit activity from these two structures across all vigilance states in freely moving male rats to determine whether the RSC and the ACA are electrophysiologically specifically active during basal PS episodes. We found that theta power was significantly higher during PS than during active waking (aWK) similarly in the RSC and hippocampus (HPC) but not in ACA. Phase-amplitude coupling between HPC theta and gamma oscillations strongly and specifically increased in RSC during PS compared with aWK. It did not occur in ACA. Further, 68% and 43% of the units recorded in the RSC and ACA were significantly more active during PS than during aWK and SWS, respectively. In addition, neuronal discharge of RSC but not of ACA neurons increased just after the peak of hippocampal theta wave. Our results show for the first time that RSC neurons display enhanced spiking in synchrony with theta specifically during PS. We propose that activation of RSC neurons specifically during PS may play a role in the offline consolidation of spatial memories, and in the generation of vivid perceptual scenery during dreaming.SIGNIFICANCE STATEMENT Fifty years ago, Michel Jouvet used the term paradoxical to define REM sleep because of the simultaneous occurrence of a cortical activation similar to waking accompanied by muscle atonia. However, we recently demonstrated using functional neuroanatomy that only a few limbic structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) are activated during PS. In the present study, we show for the first time that the RSC and ACA contain neurons firing more during PS than in any other state. Further, RSC neurons are firing in phase with the hippocampal theta rhythm. These data indicate that the RSC is very active during PS and could play a key role in memory consolidation taking place during this state.


Subject(s)
Cerebral Cortex/physiology , Gyrus Cinguli/physiology , Hippocampus/physiology , Sleep, REM/physiology , Theta Rhythm/physiology , Animals , Electrophysiological Phenomena/physiology , Male , Rats , Rats, Sprague-Dawley
11.
Conscious Cogn ; 56: 178-187, 2017 11.
Article in English | MEDLINE | ID: mdl-28943127

ABSTRACT

Computer-based dreams content analysis relies on word frequencies within predefined categories in order to identify different elements in text. As a complementary approach, we explored the capabilities and limitations of word-embedding techniques to identify word usage patterns among dream reports. These tools allow us to quantify words associations in text and to identify the meaning of target words. Word-embeddings have been extensively studied in large datasets, but only a few studies analyze semantic representations in small corpora. To fill this gap, we compared Skip-gram and Latent Semantic Analysis (LSA) capabilities to extract semantic associations from dream reports. LSA showed better performance than Skip-gram in small size corpora in two tests. Furthermore, LSA captured relevant word associations in dream collection, even in cases with low-frequency words or small numbers of dreams. Word associations in dreams reports can thus be quantified by LSA, which opens new avenues for dream interpretation and decoding.


Subject(s)
Association , Dreams/psychology , Psycholinguistics/methods , Semantics , Humans
12.
PLoS Comput Biol ; 11(5): e1004241, 2015 May.
Article in English | MEDLINE | ID: mdl-26020963

ABSTRACT

Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic restructuring.


Subject(s)
Models, Neurological , Neuronal Plasticity/physiology , Sleep/physiology , Action Potentials , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Electrophysiological Phenomena , Hippocampus/physiology , Homeostasis , Long-Term Potentiation/physiology , Male , Memory Consolidation/physiology , Models, Psychological , Rats , Rats, Wistar , Sleep, REM/physiology , Wakefulness/physiology
13.
New Dir Child Adolesc Dev ; 2016(152): 59-69, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27254827

ABSTRACT

The early onset of mental disorders can lead to serious cognitive damage, and timely interventions are needed in order to prevent them. In patients of low socioeconomic status, as is common in Latin America, it can be hard to identify children at risk. Here, we briefly introduce the problem by reviewing the scarce epidemiological data from Latin America regarding the onset of mental disorders, and discussing the difficulties associated with early diagnosis. Then we present computational psychiatry, a new field to which we and other Latin American researchers have contributed methods particularly relevant for the quantitative investigation of psychopathologies manifested during childhood. We focus on new technologies that help to identify mental disease and provide prodromal evaluation, so as to promote early differential diagnosis and intervention. To conclude, we discuss the application of these methods to clinical and educational practice. A comprehensive and quantitative characterization of verbal behavior in children, from hospitals and laboratories to homes and schools, may lead to more effective pedagogical and medical intervention.


Subject(s)
Early Diagnosis , Mental Disorders/diagnosis , Psychiatry/methods , Adolescent , Child , Child, Preschool , Humans , Latin America/epidemiology , Mental Disorders/epidemiology
14.
Neurobiol Learn Mem ; 122: 19-27, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25626078

ABSTRACT

Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.


Subject(s)
Hippocampus/physiology , Memory/physiology , Neuronal Plasticity/physiology , Sleep, REM/physiology , Animals , Exploratory Behavior/physiology , Gene Expression , Male , Neuronal Plasticity/genetics , Rats , Rats, Wistar , Sleep, REM/genetics , Somatosensory Cortex/physiology
16.
J Neurosci ; 33(4): 1535-9, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23345227

ABSTRACT

Recent reports converge to the idea that high-frequency oscillations in local field potentials (LFPs) represent multiunit activity. In particular, the amplitude of LFP activity above 100 Hz-commonly referred to as "high-gamma" or "epsilon" band-was found to correlate with firing rate. However, other studies suggest the existence of true LFP oscillations at this frequency range that are different from the well established ripple oscillations. Using multisite recordings of the hippocampus of freely moving rats, we show here that high-frequency LFP oscillations can represent either the spectral leakage of spiking activity or a genuine rhythm, depending on recording location. Both spike-leaked, spurious activity and true fast oscillations couple to theta phase; however, the two phenomena can be clearly distinguished by other key features, such as preferred coupling phase and spectral signatures. Our results argue against the idea that all high-frequency LFP activity stems from spike contamination and suggest avoiding defining brain rhythms solely based on frequency range.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/physiology , Animals , Electrophysiology , Rats
17.
Hippocampus ; 24(6): 693-702, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24520011

ABSTRACT

The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5-12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making.


Subject(s)
CA1 Region, Hippocampal/physiology , Decision Making/physiology , Maze Learning/physiology , Theta Rhythm , Animals , Choice Behavior/physiology , Electrodes, Implanted , Goals , Male , Motor Activity/physiology , Rats, Wistar , Reward , Task Performance and Analysis , Time Factors , Volition/physiology
18.
Eur J Neurosci ; 40(11): 3693-703, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25288307

ABSTRACT

The oscillatory activity of hippocampal neuronal networks is believed to play a role in memory acquisition and consolidation. Particular focus has been given to characterising theta (4-12 Hz), gamma (40-100 Hz) and ripple (150-250 Hz) oscillations. Beyond these well-described network states, few studies have investigated hippocampal beta2 (23-30 Hz) activity in vivo and its link to behaviour. A previous sudy showed that the exploration of novel environments may lead to the appearance of beta2 oscillations in the mouse hippocampus. In the present study we characterised hippocampal beta2 oscillations in mice during an object recognition task. We found prominent bursts of beta2 oscillations in the beginning of novel exploration sessions (four new objects), which could be readily observed by spectral analysis and visual inspection of local field potentials. Beta2 modulated hippocampal but not neocortical neurons and its power decreased along the session. We also found increased beta2 power in the beginning of a second exploration session performed 24 h later in a slightly modified environment (two new, two familiar objects), but to a lesser extent than in the first session. However, the increase in beta2 power in the second exploration session became similar to the first session when we pharmacologically impaired object recognition in a new set of experiments performed 1 week later. Our results suggest that hippocampal beta2 activity is associated with a dynamic network state tuned for novelty detection and which may allow new learning to occur.


Subject(s)
Beta Rhythm/physiology , Hippocampus/physiology , Recognition, Psychology/physiology , Animals , Beta Rhythm/drug effects , Electrodes, Implanted , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Haloperidol/pharmacology , Hippocampus/drug effects , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Mice, Inbred C57BL , Motor Cortex/physiology , Neurons/physiology , Neuropsychological Tests , Psychotropic Drugs/pharmacology , Recognition, Psychology/drug effects , Somatosensory Cortex/physiology , Space Perception/drug effects , Space Perception/physiology , Theta Rhythm/physiology
19.
Proc Natl Acad Sci U S A ; 108(37): 15408-13, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21876148

ABSTRACT

Cortical areas that directly receive sensory inputs from the thalamus were long thought to be exclusively dedicated to a single modality, originating separate labeled lines. In the past decade, however, several independent lines of research have demonstrated cross-modal responses in primary sensory areas. To investigate whether these responses represent behaviorally relevant information, we carried out neuronal recordings in the primary somatosensory cortex (S1) and primary visual cortex (V1) of rats as they performed whisker-based tasks in the dark. During the free exploration of novel objects, V1 and S1 responses carried comparable amounts of information about object identity. During execution of an aperture tactile discrimination task, tactile recruitment was slower and less robust in V1 than in S1. However, V1 tactile responses correlated significantly with performance across sessions. Altogether, the results support the notion that primary sensory areas have a preference for a given modality but can engage in meaningful cross-modal processing depending on task demand.


Subject(s)
Discrimination, Psychological/physiology , Touch/physiology , Visual Cortex/physiology , Visual Perception/physiology , Action Potentials/physiology , Animals , Exploratory Behavior/physiology , Male , Neurons/physiology , Pattern Recognition, Visual/physiology , Rats , Rats, Long-Evans , Vibrissae/physiology
20.
Sci Rep ; 14(1): 11281, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760450

ABSTRACT

5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.


Subject(s)
Hippocampus , Prefrontal Cortex , Sleep , Wakefulness , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats , Hippocampus/drug effects , Hippocampus/physiology , Wakefulness/drug effects , Wakefulness/physiology , Male , Sleep/drug effects , Sleep/physiology , Electroencephalography , Theta Rhythm/drug effects , Hallucinogens/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL