Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Plant J ; 118(6): 1848-1863, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488203

ABSTRACT

Noncoding and coding RNAs are key regulators of plant growth, development, and stress responses. To investigate the types of transcripts accumulated during the vegetative to reproductive transition and floral development in the Coffea arabica L., we sequenced small RNA libraries from eight developmental stages, up to anthesis. We combined these data with messenger RNA and PARE sequencing of two important development stages that marks the transition of an apparent latent to a rapid growth stage. In addition, we took advantage of multiple in silico tools to characterize genomic loci producing small RNAs such as phasiRNAs, miRNAs, and tRFs. Our differential and co-expression analysis showed that some types of small RNAs such as tRNAs, snoRNAs, snRNAs, and phasiRNAs preferentially accumulate in a stage-specific manner. Members of the miR482/miR2118 superfamily and their 21-nucleotide phasiRNAs originating from resistance genes show a robust co-expression pattern that is maintained across all the evaluated developmental stages. Finally, the majority of miRNAs accumulate in a family stage-specific manner, related to modulated hormonal responses and transcription factor expression.


Subject(s)
Coffea , Flowers , Gene Expression Regulation, Plant , MicroRNAs , RNA, Plant , Coffea/genetics , Coffea/growth & development , Flowers/genetics , Flowers/growth & development , RNA, Plant/genetics , MicroRNAs/genetics , Tetraploidy
2.
Planta ; 259(6): 150, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727772

ABSTRACT

MAIN CONCLUSION: The hop phenological cycle was described in subtropical condition of Brazil showing that flowering can happen at any time of year and this was related to developmental molecular pathways. Hops are traditionally produced in temperate regions, as it was believed that vernalization was necessary for flowering. Nevertheless, recent studies have revealed the potential for hops to flower in tropical and subtropical climates. In this work, we observed that hops in the subtropical climate of Minas Gerais, Brazil grow and flower multiple times throughout the year, independently of the season, contrasting with what happens in temperate regions. This could be due to the photoperiod consistently being inductive, with daylight hours below the described threshold (16.5 h critical). We observed that when the plants reached 7-9 nodes, the leaves began to transition from heart-shaped to trilobed-shaped, which could be indicative of the juvenile to adult transition. This could be related to the fact that the 5th node (in plants with 10 nodes) had the highest expression of miR156, while two miR172s increased in the 20th node (in plants with 25 nodes). Hop flowers appeared later, in the 25th or 28th nodes, and the expression of HlFT3 and HlFT5 was upregulated in plants between 15 and 20 nodes, while the expression of HlTFL3 was upregulated in plants with 20 nodes. These results indicate the role of axillary meristem age in regulating this process and suggest that the florigenic signal should be maintained until the hop plants bloom. In addition, it is possible that the expression of TFL is not sufficient to inhibit flowering in these conditions and promote branching. These findings suggest that the reproductive transition in hop under inductive photoperiodic conditions could occur in plants between 15 and 20 nodes. Our study sheds light on the intricate molecular mechanisms underlying hop floral development, paving the way for potential advancements in hop production on a global scale.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Humulus , Photoperiod , Plant Leaves , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Humulus/genetics , Humulus/growth & development , Humulus/physiology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/metabolism , Seasons , Brazil , MicroRNAs/genetics , MicroRNAs/metabolism , Tropical Climate
3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569839

ABSTRACT

The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.

4.
Phytopathology ; 112(4): 862-871, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34622696

ABSTRACT

With the progressive loss of fungicide efficacy against Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), alternative methods to protect soybean crops are needed. Resistance induction is a low impact alternative and/or supplement to fungicide applications that fortifies innate plant defenses against pathogens. Here, we show that a microbial fermentation product (MFP) induces plant defenses in soybean, and transcriptional induction is enhanced with the introduction of ASR. MFP-treated plants exhibited 1,011 and 1,877 differentially expressed genes (DEGs) 12 and 60 h after treatment, respectively, compared with water controls. MFP plants exposed to the pathogen 48 h after application and sampled 12 h later (for a total of 60 h) had 2,401 DEGs compared with control. The plant defense genes PR1, PR2, IPER, PAL, and CHS were induced with MFP application, and induction was enhanced with ASR. Enriched pathways associated with pathogen defense included plant-pathogen interactions, MAPK signaling pathways, phenylpropanoid biosynthesis, glutathione metabolism, flavonoid metabolism, and isoflavonoid metabolism. In field conditions, elevated antioxidant peroxidase activities and phenolic accumulation were measured with MFP treatment; however, improved ASR control or enhanced crop yield were not observed. MFP elicitation differences between field and laboratory grown plants necessitates further testing to identify best practices for effective disease management with MFP-treated soybean.


Subject(s)
Glycine max , Phakopsora pachyrhizi , Fermentation , Gene Expression Regulation, Plant , Plant Diseases/genetics , Glycine max/genetics
5.
Physiol Mol Biol Plants ; 28(9): 1657-1669, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36387981

ABSTRACT

Ethylene regulates different aspects of the plant's life cycle, such as flowering, and acts as a defense signal in response to environmental stresses. Changes induced by water deficit (WD) in gene expression of the main enzymes involved in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO), are frequently reported in plants. In this study, coffee (Coffea arabica) ACS and ACO family genes were characterized and their expression profiles were analyzed in leaves, roots, flower buds, and open flowers from plants under well-watered (WW) and water deficit (WD) conditions. Three new ACS genes were identified. Water deficit did not affect ACS expression in roots, however soil drying strongly downregulated ACO expression, indicating a transcriptional constraint in the biosynthesis pathway during the drought that can suppress ethylene production in roots. In floral buds, ACO expression is water-independent, suggesting a higher mechanism of control in reproductive organs during the final flowering stages. Leaves may be the main sites for ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) production in the shoot under well-watered conditions, contributing to an increase in the ethylene levels required for anthesis. Given these results, we suggest a possible regulatory mechanism for the ethylene biosynthesis pathway associated with coffee flowering with gene regulation in leaves being a key point in ethylene production and ACO genes play a major regulatory role in roots and the shoots. This mechanism may constitute a regulatory model for flowering in other woody species. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01235-y.

6.
Mem Inst Oswaldo Cruz ; 115: e190378, 2020.
Article in English | MEDLINE | ID: mdl-32401998

ABSTRACT

BACKGROUND Key genes control the infectivity of the Schistosoma haematobium causing schistosomiasis. A method for understanding the regulation of these genes might help in developing new disease strategies to control schistosomiasis, such as the silencing mediated by microRNAs (miRNAs). The miRNAs have been studied in schistosome species and they play important roles in the post-transcriptional regulation of genes, and in parasite-host interactions. However, genome-wide identification and characterisation of novel miRNAs and their pathway genes and their gene expression have not been explored deeply in the genome and transcriptome of S. haematobium. OBJECTIVES Identify and characterise mature and precursor miRNAs and their pathway genes in the S. haematobium genome. METHODS Computational prediction and characterisation of miRNAs and genes involved in miRNA pathway from S. haematobium genome on SchistoDB. Conserved domain analysis was performed using PFAM and CDD databases. A robust algorithm was applied to identify mature miRNAs and their precursors. The characterisation of the precursor miRNAs was performed using RNAfold, RNAalifold and Perl scripts. FINDINGS We identified and characterised 14 putative proteins involved in miRNA pathway including ARGONAUTE and DICER in S. haematobium. Besides that, 149 mature miRNAs and 131 precursor miRNAs were identified in the genome including novel miRNAs. MAIN CONCLUSIONS miRNA pathway occurs in the S. haematobium, including endogenous miRNAs and miRNA pathway components, suggesting a role of this type of non-coding RNAs in gene regulation in the parasite. The results found in this work will open up a new avenue for studying miRNAs in the S. haematobium biology in helping to understand the mechanism of gene silencing in the human parasite Schistosome.


Subject(s)
Computational Biology/methods , Gene Expression Regulation/genetics , MicroRNAs/genetics , Schistosoma haematobium/genetics , Schistosomiasis/parasitology , Animals , Humans , Sequence Analysis, RNA , Transcriptome/genetics
7.
Mem Inst Oswaldo Cruz ; 114: e190052, 2019.
Article in English | MEDLINE | ID: mdl-31166481

ABSTRACT

BACKGROUND: Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE: The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS: The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS: 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS: Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis.


Subject(s)
Biomphalaria/genetics , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics , Animals , Biomphalaria/enzymology , Computational Biology , Gene Expression Profiling/methods , Genome-Wide Association Study , Phylogeny , Reference Values , Transcriptome , Ubiquitination
8.
Biochem J ; 474(2): 301-315, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28062841

ABSTRACT

Aging is a natural process characterized by several biological changes. In this context, oxidative stress appears as a key factor that leads cells and organisms to severe dysfunctions and diseases. To cope with reactive oxygen species and oxidative-related damage, there has been increased use of superoxide dismutase (SOD)/catalase (CAT) biomimetic compounds. Recently, we have shown that three metal-based compounds {[Fe(HPClNOL)Cl2]NO3, [Cu(HPClNOL)(CH3CN)](ClO4)2 and Mn(HPClNOL)(Cl)2}, harboring in vitro SOD and/or CAT activities, were critical for protection of yeast cells against oxidative stress. In this work, treating Saccharomyces cerevisiae with these SOD/CAT mimics (25.0 µM/1 h), we highlight the pivotal role of these compounds to extend the life span of yeast during chronological aging. Evaluating lipid and protein oxidation of aged cells, it becomes evident that these mimics extend the life expectancy of yeast mainly due to the reduction in oxidative stress biomarkers. In addition, the treatment of yeast cells with these mimics regulated the amounts of lipid droplet occurrence, consistent with the requirement and protection of lipids for cell integrity during aging. Concerning SOD/CAT mimics uptake, using inductively coupled plasma mass spectrometry, we add new evidence that these complexes, besides being bioabsorbed by S. cerevisiae cells, can also affect metal homeostasis. Finally, our work presents a new application for these SOD/CAT mimics, which demonstrate a great potential to be employed as antiaging agents. Taken together, these promising results prompt future studies concerning the relevance of administration of these molecules against the emerging aging-related diseases such as Parkinson's, Alzheimer's and Huntington's.


Subject(s)
Biomimetic Materials/pharmacology , Catalase/metabolism , Coordination Complexes/pharmacology , Pyridines/pharmacology , Saccharomyces cerevisiae/drug effects , Superoxide Dismutase/deficiency , Biomarkers/metabolism , Biomimetic Materials/chemical synthesis , Biomimetic Materials/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Copper/chemistry , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Iron/chemistry , Lipid Droplets/drug effects , Manganese/chemistry , Microbial Viability/drug effects , Oxidation-Reduction , Oxidative Stress , Pyridines/chemical synthesis , Pyridines/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/metabolism
9.
PLoS Genet ; 10(11): e1004741, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25393002

ABSTRACT

Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies.


Subject(s)
Parkinson Disease/genetics , Protein Aggregation, Pathological/genetics , alpha-Synuclein/genetics , Cell Line , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Lysosomes/metabolism , Lysosomes/pathology , Mutagenesis, Site-Directed , Parkinson Disease/pathology , Phosphorylation , Point Mutation , alpha-Synuclein/metabolism
10.
Plants (Basel) ; 11(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35567239

ABSTRACT

MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical and beverage industries. The MADS-box family has not been studied in this species yet. We identified 65 MADS-box genes in the hop genome, of which 29 encode type-II TFs (27 of subgroup MIKCC and 2 MIKC*) and 36 type-I proteins (26 α, 9 ß, and 1 γ). Type-II MADS-box genes evolved more complex architectures than type-I genes. Interestingly, we did not find FLOWERING LOCUS C (FLC) homologs, a transcription factor that acts as a floral repressor and is negatively regulated by cold. This result provides a molecular explanation for a previous work showing that vernalization is not a requirement for hop flowering, which has implications for its cultivation in the tropics. Analysis of gene ontology and expression profiling revealed genes potentially involved in the development of male and female floral structures based on the differential expression of ABC homeotic genes in each whorl of the flower. We identified a gene exclusively expressed in lupulin glands, suggesting a role in specialized metabolism in these structures. In toto, this work contributes to understanding the evolutionary history of MADS-box genes in hop, and provides perspectives on functional genetic studies, biotechnology, and crop breeding.

11.
Plant Sci ; 325: 111479, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181945

ABSTRACT

The behavior of florigen(s) and environment-influenced regulatory pathways that control floral initiation in tropical perennials species with complex phenological cycles is poorly understood. Understanding the mechanisms underlying this process is important for food production in the face of climate change, thus, we used Coffea sp. L. (Rubiaceae) as a model to explore this issue. Homologs of FLOWERING LOCUS T (CaFT1) and environment-related regulators CONSTANS (CaCO), PHYTOCHROME INTERACTING FACTOR 4 (CaPIF4) and FLOWERING LOCUS C (CaFLC) were retrieved from coffee genomes and identified through phylogenetic analysis. Overexpression of CaFT1 in Arabidopsis caused early-flowering phenotype and yeast two hybrid studies indicated CaFT1 binding to bZIP floral regulator FD, which suggests that CaFT1 is a coffee florigen. Expression of CaFT1 and other floral regulators, together with carbohydrate analysis, were evaluated over one year using three contrasting genotypes, two C. arabica cultivars and C. canephora. All genotypes showed active and variable CaFT1 transcription from February until October, indicating the potential window for floral induction that reached a maximum in the cold period of June. CaCO expression, as expected, varied over a 24-hour day period and monthly with day length, whereas expression of temperature-responsive homologs, CaFLC and CaPIF4, did not correlate with temperature changes nor CaFT1 expression, suggesting alternative FT regulatory pathways in coffee. Based on our results, we suggest a continuum of floral induction that allows different starting points for floral activation, which explains developmental asynchronicity and prolonged anthesis events in tropical perennial species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Florigen/metabolism , Coffee/metabolism , Gene Expression Regulation, Plant , Flowers/genetics , Flowers/metabolism , Phylogeny , Gene Expression Regulation, Developmental , Arabidopsis/genetics , Arabidopsis Proteins/metabolism
12.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166475, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35777688

ABSTRACT

The overproduction of reactive oxygen species (ROS) induces oxidative stress, a well-known process associated with aging and several human pathologies, such as cancer and neurodegenerative diseases. A large number of synthetic compounds have been described as antioxidant enzyme mimics, capable of eliminating ROS and/or reducing oxidative damage. In this study, we investigated the antioxidant activity of a water-soluble 1,10-phenantroline-octanediaoate Mn2+-complex on cells under oxidative stress, and assessed its capacity to attenuate alpha-synuclein (aSyn) toxicity and aggregation, a process associated with increased oxidative stress. This Mn2+-complex exhibited a significant antioxidant potential, reducing intracelular oxidation and increasing oxidative stress resistance in S. cerevisiae cells and in vivo, in G. mellonella, increasing the activity of the intracellular antioxidant enzymes superoxide dismutase and catalase. Strikingly, the Mn2+-complex reduced both aSyn oligomerization and aggregation in human cell cultures and, using NMR and DFT/molecular docking we confirmed its interaction with the C-terminal region of aSyn. In conclusion, the Mn2+-complex appears as an excellent lead for the design of new phenanthroline derivatives as alternative compounds for preventing oxidative damages and oxidative stress - related diseases.


Subject(s)
Antioxidants , Manganese , Phenanthrolines , alpha-Synuclein , Antioxidants/pharmacology , Manganese/pharmacology , Molecular Docking Simulation , Phenanthrolines/pharmacology , Reactive Oxygen Species , Saccharomyces cerevisiae , Water
13.
Front Plant Sci ; 11: 1113, 2020.
Article in English | MEDLINE | ID: mdl-32849685

ABSTRACT

The projected impact of global warming on coffee production may require the heat-adapted genotypes in the next decades. To identify cellular strategies in response to warmer temperatures, we compared the effect of elevated temperature on two commercial Coffea arabica L. genotypes exploring leaf physiology, transcriptome, and carbohydrate/protein composition. Growth temperatures were 23/19°C (day/night), as optimal condition (OpT), and 30/26°C (day/night) as a possible warmer scenario (WaT). The cv. Acauã showed lower levels of leaf temperature (Tleaf) under both conditions compared to cv. Catuaí, whereas slightly or no differences for other leaf physiological parameters. Therefore, to explore temperature responsive pathways the leaf transcriptome was examined using RNAseq. Genotypes showed a marked number of differentially-expressed genes (DEGs) under OpT, however DEGs strongly decrease in both at WaT condition indicating a transcriptional constraint. DEGs responsive to WaT revealed shared and genotype-specific genes mostly related to carbohydrate metabolism. Under OpT, leaf starch content was greater in cv. Acauã and, as WaT temperature was imposed, the leaf soluble sugar did not change in contrast to cv. Catuaí, although the levels of leaf starch, sucrose, and leaf protein decreased in both genotypes. These findings revealed intraspecific differences in the underlying transcriptional and metabolic interconnected pathways responsive to warmer temperatures, which is potentially linked to thermotolerance, and thus may be useful as biomarkers in breeding for a changing climate.

14.
Sci Rep ; 10(1): 9514, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32528037

ABSTRACT

Bud necrosis (BN) is a common disorder that affects Vitis vinifera L. and reduces its potential yield. To minimize the losses caused by BN, the double pruning management was applied in Brazilian Southeast vineyards. In this management strategy plants are pruned at the winter to promote a vegetative cycle and then, at summer, to promote the reproductive cycle at optimal environmental conditions. To investigate the relationship of BN and the double pruning management RNA-seq libraries were sequenced from healthy and necrotic tissues at four different stages of the year. The comparison of differentially expressed genes in necrotic and non-necrotic tissues showed an enhanced expression of genes related to cell death possibly induced by endophytic microorganisms in the necrotic tissues. The de novo assembly, characterization and quantification of transcripts within the RNA-seq libraries showed that genes from the endophytic fungus Alternaria alternata, responsible for the production of toxic compounds were highly expressed under BN. Here we propose a model in which unfavorable conditions and reduced carbohydrate levels in buds can promote the switch from a biotrophic lifestyle to a necrotrophic lifestyle in the endophytic fungi, which seems to be involved in the development of BN.


Subject(s)
Alternaria/physiology , Endophytes/physiology , Gene Expression Profiling , Plant Diseases/genetics , Plant Diseases/microbiology , Vitis/genetics , Vitis/microbiology , Necrosis/genetics , Plant Shoots/genetics , Plant Shoots/microbiology , Reproduction
15.
Sci Rep ; 8(1): 16069, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375421

ABSTRACT

Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.


Subject(s)
Fruit/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Solanum lycopersicum/genetics , Fruit/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Genome, Plant/genetics , High-Throughput Nucleotide Sequencing , Solanum lycopersicum/growth & development
16.
PLoS One ; 12(4): e0176333, 2017.
Article in English | MEDLINE | ID: mdl-28448529

ABSTRACT

microRNAs (miRNAs) are derived from self-complementary hairpin structures, while small-interfering RNAs (siRNAs) are derived from double-stranded RNA (dsRNA) or hairpin precursors. The core mechanism of sRNA production involves DICER-like (DCL) in processing the smallRNAs (sRNAs) and ARGONAUTE (AGO) as effectors of silencing, and siRNA biogenesis also involves action of RNA-Dependent RNA Polymerase (RDR), Pol IV and Pol V in biogenesis. Several other proteins interact with the core proteins to guide sRNA biogenesis, action, and turnover. We aimed to unravel the components and functions of the RNA-guided silencing pathway in a non-model plant species of worldwide economic relevance. The sRNA-guided silencing complex members have been identified in the Coffea canephora genome, and they have been characterized at the structural, functional, and evolutionary levels by computational analyses. Eleven AGO proteins, nine DCL proteins (which include a DCL1-like protein that was not previously annotated), and eight RDR proteins were identified. Another 48 proteins implicated in smallRNA (sRNA) pathways were also identified. Furthermore, we identified 235 miRNA precursors and 317 mature miRNAs from 113 MIR families, and we characterized ccp-MIR156, ccp-MIR172, and ccp-MIR390. Target prediction and gene ontology analyses of 2239 putative targets showed that significant pathways in coffee are targeted by miRNAs. We provide evidence of the expansion of the loci related to sRNA pathways, insights into the activities of these proteins by domain and catalytic site analyses, and gene expression analysis. The number of MIR loci and their targeted pathways highlight the importance of miRNAs in coffee. We identified several roles of sRNAs in C. canephora, which offers substantial insight into better understanding the transcriptional and post-transcriptional regulation of this major crop.


Subject(s)
Coffee/genetics , Gene Silencing , Genomics , RNA, Small Interfering/genetics , Base Sequence
17.
J Inorg Biochem ; 170: 160-168, 2017 05.
Article in English | MEDLINE | ID: mdl-28249224

ABSTRACT

Alzheimer's and Parkinson's diseases share similar amyloidogenic mechanisms, in which metal ions might play an important role. In this last neuropathy, misfolding and aggregation of α-synuclein (α-Syn) are crucial pathological events. A moderate metal-binding compound, namely, 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone (INHHQ), which was previously reported as a potential 'Metal-Protein Attenuating Compound' for Alzheimer's treatment, is well-tolerated by healthy Wistar rats and does not alter their major organ weights, as well as the tissues' reduced glutathione and biometal levels, at a concentration of 200mgkg-1. INHHQ definitively crosses the blood-brain barrier and can be detected in the brain of rats so late as 24h after intraperitoneal administration. After 48h, brain clearance is complete. INHHQ is able to disrupt, in vitro, anomalous copper-α-Syn interactions, through a mechanism probably involving metal ions sequestering. This compound is non-toxic to H4 (human neuroglioma) cells and partially inhibits intracellular α-Syn oligomerization. INHHQ, thus, shows definite potential as a therapeutic agent against Parkinson's as well.


Subject(s)
Blood-Brain Barrier/metabolism , Chelating Agents , Hydrazones , Parkinson Disease, Secondary/drug therapy , Animals , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/pharmacokinetics , Chelating Agents/pharmacology , Drug Evaluation, Preclinical , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacokinetics , Hydrazones/pharmacology , Male , Parkinson Disease, Secondary/metabolism , Rats , Rats, Wistar
18.
J Inorg Biochem ; 159: 120-32, 2016 06.
Article in English | MEDLINE | ID: mdl-26986979

ABSTRACT

The complexes [Ag2(OOC-(CH2)n-COO)] (n=1-10) (1-10) were synthesised and reacted with 1,10-phenanthroline (phen) to yield derivatives formulating as [Ag2(phen)x(OOC-(CH2)y-COO)]·zH2O (x=2 or 3; y=1-10; z=1-4) (11-20) which are highly water-soluble and photo-stable in aqueous solution. The phen derivatives 11-20 exhibit chemotherapeutic potential against Candida albicans, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and against cisplatin-sensitive breast (MCF-7) and resistant ovarian (SKOV-3) cancer cell lines. Cyclic voltammetric analysis and DNA binding and intercalation studies indicate that the mechanism of action of 11-20 is significantly different to that of their silver(I) dicarboxylate precursors and they do not induce DNA damage or ROS generation in mammalian cells. The representative complexes 9 and 19 (containing the undecanedioate ligand) were both found to significantly reduce superoxide and hydrogen peroxide induced oxidative stress in the yeast S. cerevisiae.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Bacteria/growth & development , Breast Neoplasms/drug therapy , Candida albicans/growth & development , Ovarian Neoplasms/drug therapy , Phenanthrolines , Silver , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , MCF-7 Cells , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phenanthrolines/chemical synthesis , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Saccharomyces cerevisiae/metabolism , Silver/chemistry , Silver/pharmacology , Solubility
19.
Free Radic Biol Med ; 80: 67-76, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25511255

ABSTRACT

Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 µmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities.


Subject(s)
Antioxidants/pharmacology , Biomimetic Materials/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , Iron/chemistry , Manganese/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/drug effects , Antioxidants/chemical synthesis , Biocatalysis , Biomimetic Materials/chemical synthesis , Catalase/chemistry , Catalase/metabolism , Coordination Complexes/chemical synthesis , Gene Expression , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Microbial Viability/drug effects , Oxidative Stress/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Superoxides/antagonists & inhibitors , Superoxides/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
20.
Mem. Inst. Oswaldo Cruz ; 114: e190052, 2019. tab, graf
Article in English | LILACS | ID: biblio-1012678

ABSTRACT

BACKGROUND Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis.


Subject(s)
Humans , Ubiquitin/analysis , Proteasome Endopeptidase Complex , Genome-Wide Association Study/methods , Biomphalaria/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL