Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Phys Chem Chem Phys ; 24(24): 15068-15074, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35696995

ABSTRACT

Carbon nanotubes individually show excellent mechanical properties, being one of the strongest known materials. However, when assembled into bundles, their strength reduces dramatically. This still limits the understanding of their scalability. Here, we perform reactive molecular dynamics simulations to study the mechanical resilience and fracture patterns of carbon nanotube bundles (CNTBs) under torsional strain. The results revealed that the fracture patterns of CNTBs are diameter-dependent. The larger the tube diameter, the higher the plasticity degree of the bundle sample when subjected to torsional loading. Tube chirality can also play a role in distinguishing between the CNTBs during the torsion process. Armchair-based CNTBs have higher accumulated energies and, consequently, higher critical angles for the bundle fracture when contrasted with CNTBs composed of zigzag or chiral nanotubes. Remarkably, the CNTB torsional fracture can yield nanodiamondoids.

2.
Molecules ; 27(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408535

ABSTRACT

Organic compounds have been employed in developing new green energy solutions with good cost-efficiency compromise, such as photovoltaics. The light-harvesting process in these applications is a crucial feature that still needs improvements. Here, we studied natural dyes to propose an alternative for enhancing the light-harvesting capability of photovoltaics. We performed density functional theory calculations to investigate the electronic and optical properties of the four natural dyes found in achiote seeds (Bixa orellana L.). Different DFT functionals, and basis sets, were used to calculate the electronic and optical properties of the bixin, norbixin, and their trans-isomers (molecules present in Bixa orellana L.). We observed that the planarity of the molecules and their similar extension for the conjugation pathways provide substantially delocalized wavefunctions of the frontier orbitals and similar values for their energies. Our findings also revealed a strong absorption peak in the blue region and an absorption band over the visible spectrum. These results indicate that Bixa orellana L. molecules can be good candidates for improving light-harvesting in photovoltaics.


Subject(s)
Bixaceae , Seeds , Bixaceae/metabolism , Carotenoids , Coloring Agents/metabolism , Electronics , Seeds/metabolism
3.
Phys Chem Chem Phys ; 23(28): 15313-15318, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34254071

ABSTRACT

Graphene-based nanofolds (GNFs) are edge-connected 2D stacked monolayers that originate from single-layer graphene. Graphene-based nanoscrolls (GNSs) are nanomaterials with geometry resembling graphene layers rolled up into a spiral (papyrus-like) form. Both GNS and GNF structures induce significant changes in the mechanical and optoelectronic properties of single-layer graphene, aggregating new functionalities in carbon-based applications. Here, we carried out fully atomistic reactive (ReaxFF) molecular dynamics simulations to study the self-folding and self-scrolling mechanisms of edge-deformed graphene sheets. We adopted initial armchair edge-scrolled graphene (AESG(φ, θ)) structures with similar (or different) twist angles (φ, θ) in each edge, mimicking the initial configuration that was experimentally developed to form biscrolled sheets. The results showed that AESG(0, 2π) and AESG(2π, 2π) evolved to single-folded and two-folded fully stacked morphologies, respectively. As a general trend, for twist angles higher than 2π, the self-deformation process of AESG morphologies yields GNSs. Edge twist angles lower than π are not enough for triggering the self-deformation processes. In the AESG(0, 3π) and AESG(3π, 3π) cases, after a relaxation period, their morphology transition towards GNSs occurred rapidly. In the AESG(3π, 3π) dynamics, a metastable biscroll was formed by the interplay between the left- and right-sided partial scrolling while forming a unique GNS. At high-temperature perturbations, the edge folding and scrolling transitions to GNFs and GNSs occurred within an ultrafast time-period. Remarkably, the AESG(2π, 3π) evolved to a dual state that combines folded and scrolled structures in a temperature-independent process.

4.
Phys Chem Chem Phys ; 23(15): 9089-9095, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33625430

ABSTRACT

Recently, laser-assisted chemical vapor deposition has been used to synthesize a free-standing, continuous, and stable monolayer amorphous carbon (MAC). MAC is a pure carbon structure composed of randomly distributed five, six, seven, and eight atom rings, which is different from that of disordered graphene. More recently, amorphous MAC-based nanotubes (a-CNT) and nanoscrolls (a-CNS) were proposed. In this work, we have investigated (through fully atomistic reactive molecular dynamics simulations) the mechanical properties and sublimation points of pristine and a-CNT and a-CNS. The results showed that a-CNT and a-CNS have distinct elastic properties and fracture patterns compared to those of their pristine analogs. Both a-CNT and a-CNS presented a non-elastic regime before their total rupture, whereas the CNT and CNS underwent a direct conversion to fractured forms after a critical strain threshold. The critical strain values for the fracture of the a-CNT and a-CNS are about 30% and 25%, respectively, and they are lower than those of the corresponding CNT and CNS cases. Although less resilient to tension, the amorphous tubular structures have similar thermal stability in relation to the pristine cases with sublimation points of 5500 K, 6300 K, 5100 K, and 5900 K for a-CNT, CNT, a-CNS, and CNS, respectively. An interesting result is that the nanostructure behavior is substantially different depending on whether it is a nanotube or a nanoscroll, thus indicating that the topology plays an important role in defining its elastic properties.

5.
Phys Chem Chem Phys ; 21(46): 25606-25625, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31720607

ABSTRACT

Electronic coupling between adjacent molecules is one of the key parameters determining the charge transfer (CT) rates in bulk heterojunction (BHJ) polymer solar cells (PSCs). We calculate theoretically electronic couplings for exciton dissociation (ED) and charge recombination (CR) processes at local poly(thiophene-co-quinoxaline) (TQ)-PC71BM interfaces. We use eigenstate-based coupling schemes, i.e. the generalized Mulliken-Hush (GMH) and fragment charge difference (FCD) schemes, including 2 to multiple (3-11) states. Moreover, we study the effects of functionals, excited state methods, basis sets, surrounding media, and relative placements of TQ and PC71BM on the coupling values. Generally, both schemes provide consistent couplings with the global hybrid functionals, which yield more charge-localized diabatic states and constant coupling values regardless of the number of states, and so the 2-state schemes may be sufficient. The (non-tuned and optimally tuned) long-range corrected (LRC) functionals result in more notable mixing of the local components with the CT states. Employing multiple states reduces the mixing and thus improves the LRC results, although the method still affects the GMH CR couplings. As the FCD scheme is less sensitive, we recommend combining it with the multi-state treatment for polymer-fullerene systems when using the LRC functionals. Finally, we employ the 11-state FCD couplings to calculate the ED and CR rates, which are consistent with the experimental rates of the polymer-fullerene systems. Our results provide more insight into choosing a suitable eigenstate-based coupling scheme for predicting the electronic couplings and CT rates in photoactive systems.

6.
Phys Chem Chem Phys ; 21(5): 2727-2733, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30664136

ABSTRACT

Polarons play a crucial role in the charge transport mechanism when it comes to organic molecular crystals. The features of their underlying properties - mostly the ones that directly impact the yield of the net charge mobility - are still not completely understood. Here, a two-dimensional Holstein-Peierls model is employed to numerically describe the stationary polaron properties in organic semiconductors at a molecular scale. Our computational protocol yields model parameters that accurately characterize the formation and stability of polarons in ordered and disordered oligoacene-like crystals. The results show that the interplay between the intramolecular (Holstein) and intermolecular (Peierls) electron-lattice interactions critically impacts the polaron stability. Such an interplay can produce four distinct quasi-particle solutions: free-like electrons, metastable polarons, and small and large polarons. The latter governs the charge transport in organic crystalline semiconductors. Regarding disordered lattices, the model takes into account two modes of static disorder. Interestingly, the results show that intramolecular disorder is always unfavorable to the formation of polarons whereas intermolecular disorder may favor the polaron generation in regimes below a threshold for the electronic transfer integral strength.

7.
Phys Chem Chem Phys ; 21(4): 1711-1716, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30620347

ABSTRACT

Excitons play a critical role in light emission when it comes to organic semiconductors. In high exciton concentration regimes, monomolecular and bimolecular routes for exciton recombination can yield different products affecting significantly the material's optical properties. Here, the dynamical decay of excitons is theoretically investigated using a kinetic Monte Carlo approach that addresses singlet exciton diffusion. Our numerical protocol includes two distinct exciton-exciton interaction channels: exciton annihilation and biexciton cascade emission. Our findings reveal that these channels produce different consequences concerning diffusion and spectroscopic properties, being able to explain diverging experimental observations. Importantly, we estimate critical exciton densities for which bimolecular recombination becomes dominant and investigate its effect on average exciton lifetimes and diffusion lengths.

8.
Phys Chem Chem Phys ; 21(21): 11168-11174, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31098601

ABSTRACT

The structural and electronic properties of MoS2 sheets doped with carbon line domains are theoretically investigated through density functional theory calculations. It is primarily studied how the system's electronic properties change when different domain levels are considered. These changes are also reflected in the geometry of the system, which acquires new properties when compared to the pristine structure. We predict, both qualitative and quantitatively, how the energy gap changes as a function of domain types. Strikingly, the band structure for the doped system shows semiconducting behavior with an indirect-bandgap, which is narrower than the one for bulk MoS2. This is an important feature as far as gap tuning engineering is concerned. It has a profound impact on the applicability of these systems in electronic devices, where an indirect bandgap favors the quantum yield efficiency.

9.
Phys Chem Chem Phys ; 20(24): 16712-16718, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29878013

ABSTRACT

An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.

10.
J Phys Chem A ; 122(15): 3866-3872, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29608859

ABSTRACT

The recombination dynamics of two oppositely charged bipolarons within a single polymer chain is numerically studied in the scope of a one-dimensional tight-binding model that considers electron-electron and electron-phonon (e-ph) interactions. By scanning among values of e-ph coupling and electric field, novel channels for the bipolaron recombination were yielded based on the interplay between these two parameters. The findings point to the formation of a compound species formed from the coupling between a bipolaron and an exciton. Depending on the electric field and e-ph coupling strengths, the recombination mechanism may yield two distinct products: a trapped (and almost neutral) or a moving (and partially charged) bipolaron-exciton. These results might enlighten the understanding of the electroluminescence processes in organic light-emitting devices.

11.
Phys Chem Chem Phys ; 19(5): 4078-4084, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28111670

ABSTRACT

Polaron dynamics in anisotropic organic molecular semiconductors is theoretically investigated and simulated in the framework of a semi-classical Holstein-Peierls model. Our computational protocol is presented and applied to studies of a two-dimensional molecular crystal. The intermolecular (Peierls) parameters for a particular crystal direction are systematically changed in order to study the effect of anisotropy in the system. The usefulness of this methodology is highlighted by studying the polaron dynamics on a picosecond timescale, which provides a microscopic insight into the influence of the interplay between different intramolecular parameters on the charge transport mechanism. Our results show that the polaron mobility is substantially reduced in going from an anisotropic to an isotropic relationship between the Peierls parameters for different directions in the crystal. Interestingly, the molecular charge distribution presents three different signatures corresponding to a one-dimensional polaron, a two-dimensional polaron, and an intermediate state for which the polaron localization depends on the degree of anisotropy. Importantly, the two-dimensional polaron, which is present in the essentially isotropic system, is immobile whereas the other two types of polarons are mobile. This, in order for polaron transport to occur in a two-dimensional molecular based system, this system has to be anisotropic.

12.
Phys Chem Chem Phys ; 19(15): 10000-10008, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28362447

ABSTRACT

The dynamics of injected holes in short transient times that precede polaron formation is numerically studied in the framework of a tight-binding electron-phonon interacting approach aimed at describing organic one-dimensional lattices. In particular, the direct impact of internal and external factors on the conversion of injected holes into polarons is carefully investigated. The results show that a hole injected at levels lower than the highest occupied molecular orbital forms self-trapped bound structures that can merge spontaneously to form a polaron after, at least, one picosecond. On the other hand, the life-time of such structures substantially decreases (up to a few hundreds of femtoseconds) when the influence of external electric fields, temperature effects and impurities is considered. Importantly, the critical values of the aforementioned factors in promoting the quenching of the self-trapped structures are obtained. These findings may enlighten the understanding of the mechanism of charge carrier generation in Polymer Light Emitting Diodes when several kinds of excitations are present.

13.
Phys Chem Chem Phys ; 17(14): 8973-82, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25746667

ABSTRACT

A semi-empirical Holstein-Peierls model is used to study the temperature effects on the polaron stability in organic semiconductors at a molecular scale. The approach takes into account both intra- and inter-molecular electron-lattice interactions and is aimed at describing charge transport in the system. Particularly, we present a systematic numerical investigation to characterize the influence of both temperature and electric field on the stability as well as mobility of the polaron. It is found that the parameter space for which the polaron is dynamically stable is quite limited and the variations in some of these parameters strongly depend on the temperature. The electric field can play a role in further localizing the charge causing a compression of the lattice distortions associated with the polaron, increasing thereby its stability, up to a field strength of approximately 2.0 mV Å(-1). Considering field strengths higher than this critical value, the polaron is annihilated spreading charge through the lattice. Furthermore, we have studied the polaron mobility as a function of the anisotropy of the system, going from a one-dimensional system via a highly anisotropic two-dimensional system to a uniform two-dimensional system. There is a clearly observed mobility edge for the polaron; it exhibits a high mobility in the one-dimensional system but as the coupling in the second dimension is turned on the polaron slows down and becomes immobile in the uniform system. The results provided by this transport mechanism are in good agreement with experimental observations and may provide guidance to improve the charge transport in organic optoelectronic devices.

14.
Phys Chem Chem Phys ; 16(32): 17072-80, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25005593

ABSTRACT

The intrachain recombination dynamics between oppositely charged polarons is theoretically investigated through the use of a version of the Su-Schrieffer-Heeger (SSH) model modified to include an external electric field, an extended Hubbard model, Coulomb interactions, and temperature effects in the framework of a nonadiabatic evolution method. Our results indicate notable characteristics concerning the polaron recombination: (1) it is found that there exists a critical temperature regime, below which an exciton is formed directly and (2) a pristine lattice is the resulting product of the recombination process, if the temperature is higher than the critical value. Additionally, it is found that the critical electric field regime plays the role of drastically modifying the system dynamics. These facts suggest that thermal effects in the intrachain recombination of polarons are crucial for the understanding of electroluminescence in optoelectronic devices, such as Polymer Light Emitting Diodes.

15.
J Phys Chem A ; 118(32): 6272-7, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25076206

ABSTRACT

The scattering process between an electron-polaron and a hole-bipolaron has been simulated using a version of the Su-Schrieffer-Heeger (SSH) model modified to include an external electric field, Coulomb interactions, and temperature effects in the scope of nonadiabatic molecular dynamics. The simulations reveal remarkable details concerning the polaron-bipolaron recombination reaction. It is found that there exists a critical temperature regime below which a hole-bipolaron and a mixed state composed by an electron-polaron and an exciton are formed and a hole-bipolaron and a free electron are the resulting products of the collisional process, if the temperature is higher than the critical value. In addition, it is obtained that both channels depend sensitively on the strength of the applied electric field. These significant results may provide guidance to understand processes regarding electroluminescence in polymer diodes.

16.
J Mol Model ; 29(11): 339, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37837452

ABSTRACT

CONTEXT: Nanoscrolls are tube-shaped structures formed when a sheet or ribbon of material is rolled into a cylinder, creating a hollow tube with a diameter on the nanoscale, similar to the papyrus. Carbon nanoscrolls have unique properties that make them useful in various applications, such as energy storage, catalysis, and drug delivery. In this study, we employed classical molecular dynamics simulations to investigate the formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride (hBN) nanoribbons. Using a carbon nanotube (CNT) as a template to trigger their collapsing, we found that graphene/graphene, graphene/hBN, and hBN/hBN could form CNT-wrapped nanoscrolls at ultrafast speeds. We also confirmed that these nanoscrolls are thermally stable and discussed the other products formed from the interaction of these complexes and their temperature dependence. Gr/Gr and hBN/Gr nanoscrolls exhibit similar interlayer distances, while hBN/hBN nanoscrolls have wider interlayer distances than the other two composite nanoscrolls. These features suggest that hBN/hBN composite nanoscrolls could more efficiently capture small molecules because of their greater interlayer spacing. METHODS: We conducted molecular dynamics simulations using the Forcite package in the Biovia Materials Studio software, which employs the Universal and Dreiding force fields. We considered an NVT ensemble with a fixed time step of 1.0 fs for a duration of 500 ps. The velocity Verlet algorithm was adopted to integrate the equations of motion of the entire system. We employed the Nosé-Hoover-Langevin thermostat to control the system temperature. The simulations were carried out without periodic boundary conditions, so there was no pressure coupling.

17.
Sci Justice ; 62(2): 181-192, 2022 03.
Article in English | MEDLINE | ID: mdl-35277232

ABSTRACT

Fingerprints do not repeat, varying from region to region on the same fingerprint and from person to person. Using this morphological exclusivity in the individualization of people is considered one of the most reliable methods of identification worldwide. Many populations have been studied with respect to sex determination from fingerprints. In this study, the ridge density from two different areas - ulnar and radial - of the ten fingerprints from 100 Brazilian men and 100 Brazilian women was ascertained and statistically analyzed. The aim was to check whether these characteristics depended on sex to distinguish them categorically. Women had significantly higher ridge density in both areas for the fingers analyzed globally. Sometimes, men and women showed statistically significant differences in hands and fingers. From ulnar and radial ridge densities, this research developed thresholds for sexual discrimination cases of human identification in Brazil.


Subject(s)
Dermatoglyphics , Sex Characteristics , Brazil , Female , Fingers , Forensic Anthropology , Humans , Male
18.
Sci Rep ; 11(1): 5142, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664310

ABSTRACT

Graphene nanoribbons (GNRs) are promising quasi-one-dimensional materials with various technological applications. Recently, methods that allowed for the control of GNR's topology have been developed, resulting in connected nanoribbons composed of two distinct armchair GNR families. Here, we employed an extended version of the Su-Schrieffer-Heeger model to study the morphological and electronic properties of these novel GNRs. Results demonstrated that charge injection leads to the formation of polarons that localize strictly in the 9-AGNRs segments of the system. Its mobility is highly impaired by the system's topology. The polaron displaces through hopping between 9-AGNR portions of the system, suggesting this mechanism for charge transport in this material.

19.
Sci Rep ; 10(1): 16748, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33028927

ABSTRACT

Penta-graphene (PG) is a carbon allotrope that has recently attracted the attention of the materials science community due to its interesting properties for renewable energy applications. Although unstable in its pure form, it has been shown that functionalization may stabilize its structure. A question that arises is whether its outstanding electronic properties could also be further improved using such a procedure. As PG bilayers present both sp[Formula: see text] and sp[Formula: see text] carbon planes, it consists of a flexible candidate for functionalization tuning of electromagnetic properties. In this work, we perform density functional theory calculations to investigate how the electronic and structural properties of PG bilayers can be tuned as a result of substitutional doping. Specifically, we observed the emergence of different magnetic properties when boron and nitrogen were used as dopant species. On the other hand, in the case of doping with oxygen, the rupture of bonds in the sp[Formula: see text] planes has not induced a magnetic moment in the material.

20.
J Mol Model ; 25(8): 245, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31342176

ABSTRACT

Graphene nanoribbons are 2D hexagonal lattices with semiconducting band gaps. Below a critical electric field strength, the charge transport in these materials is governed by the quasiparticle mechanism. The quasiparticles involved in the process, known as polarons and bipolarons, are self-interacting states between the system charges and local lattice distortions. To deeply understand the charge transport mechanism in graphene nanoribbons, the study of the stability conditions for quasiparticles in these materials is crucial and may guide new investigations to improve the efficiency for a next generation of graphene-based optoelectronic devices. Here, we use a two-dimensional version of the Su-Schrieffer-Heeger model to investigate the stability of bipolarons in armchair graphene nanoribbons (AGNRs). Our findings show how bipolaron stability is dependent on the strength of the electron-phonon interactions. Moreover, the results show that bipolarons are dynamically stable in AGNRs for electric field strengths lower than 3.0 mV/Å. Remarkably, the system's binding energy for a lattice containing a bipolaron is smaller than the formation energy of two isolated polarons, which suggests that bipolarons can be natural quasiparticle solutions in AGNRs. Graphical Abstract Charge localization of bipolarons in armchair garphene nanoribbons.

SELECTION OF CITATIONS
SEARCH DETAIL