Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genet Epidemiol ; 40(5): 404-15, 2016 07.
Article in English | MEDLINE | ID: mdl-27230302

ABSTRACT

Studying gene-environment (G × E) interactions is important, as they extend our knowledge of the genetic architecture of complex traits and may help to identify novel variants not detected via analysis of main effects alone. The main statistical framework for studying G × E interactions uses a single regression model that includes both the genetic main and G × E interaction effects (the "joint" framework). The alternative "stratified" framework combines results from genetic main-effect analyses carried out separately within the exposed and unexposed groups. Although there have been several investigations using theory and simulation, an empirical comparison of the two frameworks is lacking. Here, we compare the two frameworks using results from genome-wide association studies of systolic blood pressure for 3.2 million low frequency and 6.5 million common variants across 20 cohorts of European ancestry, comprising 79,731 individuals. Our cohorts have sample sizes ranging from 456 to 22,983 and include both family-based and population-based samples. In cohort-specific analyses, the two frameworks provided similar inference for population-based cohorts. The agreement was reduced for family-based cohorts. In meta-analyses, agreement between the two frameworks was less than that observed in cohort-specific analyses, despite the increased sample size. In meta-analyses, agreement depended on (1) the minor allele frequency, (2) inclusion of family-based cohorts in meta-analysis, and (3) filtering scheme. The stratified framework appears to approximate the joint framework well only for common variants in population-based cohorts. We conclude that the joint framework is the preferred approach and should be used to control false positives when dealing with low-frequency variants and/or family-based cohorts.


Subject(s)
Blood Pressure/genetics , Gene-Environment Interaction , Smoking , Cohort Studies , Databases, Factual , Family , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Phenotype
2.
Ethn Dis ; 27(2): 179-188, 2017.
Article in English | MEDLINE | ID: mdl-28439189

ABSTRACT

OBJECTIVES: To reduce respondent burden for future evaluations of the National Heart, Lung, and Blood Institute-supported Programs to Increase Diversity Among Individuals Engaged in Health-Related Research (PRIDE), a mentored-research education program, we sought to shorten the 33-item Ragins and McFarlin Mentor Role Instrument (RMMRI), measuring mentor-role appraisals, and the 69-item Clinical Research Appraisal Inventory (CRAI), measuring research self-efficacy. METHODS: Three nationally recruited, junior-faculty cohorts attended two, annual 2-3 week Summer Institutes (SI-1/SI-2: 2011/2012, 2012/2013, 2013/2014) at one of six PRIDE sites. Mentees completed the RMMRI two months after mentor assignment and the CRAI at baseline (pre-SI-1) and 6-month (mid-year) and 12-month (post-SI-2) follow-up. Publications data obtained from Scopus in October 2015 were verified with mentees' curriculum vitae. The RMMRI and CRAI were shortened using an iterative process of principal-components analysis. The shortened measures were examined in association with each other (multiple linear regression) and with increase in publications (repeated-measures analysis of covariance). RESULTS: PRIDE enrolled 152 mentees (70% women; 60% Black, 35% Hispanic/Latino). Cronbach's alphas for the new 9-item RMMRI, 19-item CRAI, and four CRAI-19 subscales were excellent. Controlling for baseline self-efficacy and cohort, RMMRI-9 scores were independently, positively associated with post-SI-2 scores on the CRAI-19 and three subscales (writing, study design/data analysis, and collaboration/grant preparation). Controlling for cohort, higher RMMRI-9 and post-SI-2 CRAI-19 scores were each associated with greater increase in publications. CONCLUSIONS: The RMMRI-9 and CRAI-19 retained the excellent psychometric properties of the longer measures. Findings support use of the shortened measures in future evaluations of PRIDE.


Subject(s)
Biomedical Research/organization & administration , Mentoring/methods , Mentors , Psychometrics/standards , Research Personnel/standards , Self Efficacy , Surveys and Questionnaires/standards , Female , Humans , Male
3.
Ethn Dis ; 27(3): 249-256, 2017.
Article in English | MEDLINE | ID: mdl-28811736

ABSTRACT

OBJECTIVE: To report baseline characteristics of junior-level faculty participants in the Summer Institute Programs to Increase Diversity (SIPID) and the Programs to Increase Diversity among individuals engaged in Health-Related Research (PRIDE), which aim to facilitate participants' career development as independent investigators in heart, lung, blood, and sleep research. DESIGN AND SETTING: Junior faculty from groups underrepresented in the biomedical-research workforce attended two, 2-3 week, annual summer research-education programs at one of six sites. Programs provided didactic and/or laboratory courses, workshops to develop research, writing and career-development skills, as well as a mentoring component, with regular contact maintained via phone, email and webinar conferences. Between summer institutes, trainees participated in a short mid-year meeting and an annual scientific meeting. Participants were surveyed during and after SIPID/PRIDE to evaluate program components. PARTICIPANTS: Junior faculty from underrepresented populations across the United States and Puerto Rico participated in one of three SIPID (2007-2010) or six PRIDE programs (2011-2014). RESULTS: Of 204 SIPID/PRIDE participants, 68% were female; 67% African American and 27% Hispanic/Latino; at enrollment, 75% were assistant professors and 15% instructors, with most (96%) on non-tenure track. Fifty-eight percent had research doctorates (PhD, ScD) and 42% had medical (MD, DO) degrees. Mentees' feedback about the program indicated skills development (eg, manuscript and grant writing), access to networking, and mentoring were the most beneficial elements of SIPID and PRIDE programs. Grant awards shifted from primarily mentored research mechanisms to primarily independent investigator awards after training. CONCLUSIONS: Mentees reported their career development benefited from SIPID and PRIDE participation.


Subject(s)
Biomedical Research/organization & administration , Faculty, Medical , Mentoring/methods , Mentors , National Heart, Lung, and Blood Institute (U.S.) , Program Development , Female , Humans , Male , United States
4.
Hum Mol Genet ; 23(20): 5492-504, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24861553

ABSTRACT

Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index (BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a meta-analysis of associations between BMI and ∼2.5 million genotyped or imputed single nucleotide polymorphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among 7488-47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the KCNQ1 (rs2237892, P = 9.29 × 10(-13)), ALDH2/MYL2 (rs671, P = 3.40 × 10(-11); rs12229654, P = 4.56 × 10(-9)), ITIH4 (rs2535633, P = 1.77 × 10(-10)) and NT5C2 (rs11191580, P = 3.83 × 10(-8)) genes. The association of BMI with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51 BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at the genome-wide significance level (P < 5.0 × 10(-8)) and an additional 14 at P < 1.0 × 10(-3) with the same direction of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis of obesity.


Subject(s)
5'-Nucleotidase/genetics , Aldehyde Dehydrogenase/genetics , Asian People/genetics , Blood Proteins/genetics , Cardiac Myosins/genetics , Glycoproteins/genetics , KCNQ1 Potassium Channel/genetics , Myosin Light Chains/genetics , Obesity/genetics , Proteinase Inhibitory Proteins, Secretory/genetics , Aldehyde Dehydrogenase, Mitochondrial , Body Mass Index , Asia, Eastern , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide
5.
Ethn Dis ; 26(3): 379-86, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27440978

ABSTRACT

Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants' perceptions of PRIDE's impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees' testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators.


Subject(s)
Cultural Diversity , Mentors , National Heart, Lung, and Blood Institute (U.S.) , Research Personnel , Biomedical Research , Career Choice , Humans , Program Development , United States
6.
BMC Genet ; 16: 64, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-26088064

ABSTRACT

BACKGROUND: Hypertension is a complex trait that often co-occurs with other conditions such as obesity and is affected by genetic and environmental factors. Aggregate indices such as principal components among these variables and their responses to environmental interventions may represent novel information that is potentially useful for genetic studies. RESULTS: In this study of families participating in the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) Study, blood pressure (BP) responses to dietary sodium interventions are explored. Independent component analysis (ICA) was applied to 20 variables indexing obesity and BP measured at baseline and during low sodium, high sodium and high sodium plus potassium dietary intervention periods. A "heat map" protocol that classifies subjects based on risk for hypertension is used to interpret the extracted components. ICA and heat map suggest four components best describe the data: (1) systolic hypertension, (2) general hypertension, (3) response to sodium intervention and (4) obesity. The largest heritabilities are for the systolic (64%) and general hypertension (56%) components. There is a pattern of higher heritability for the component response to intervention (40-42%) as compared to those for the traditional intervention responses computed as delta scores (24%-40%). CONCLUSIONS: In summary, the present study provides intermediate phenotypes that are heritable. Using these derived components may prove useful in gene discovery applications.


Subject(s)
Blood Pressure , Dietary Supplements , Potassium/administration & dosage , Sodium/administration & dosage , Adiposity , Adult , Female , Genetic Predisposition to Disease , Humans , Hypertension/epidemiology , Hypertension/etiology , Male , Middle Aged , Models, Statistical , Risk Factors
7.
Br J Sports Med ; 49(23): 1524-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26491034

ABSTRACT

AIM: We performed genome-wide and transcriptome-wide profiling to identify genes and single nucleotide polymorphisms (SNPs) associated with the response of triglycerides (TG) to exercise training. METHODS: Plasma TG levels were measured before and after a 20-week endurance training programme in 478 white participants from the HERITAGE Family Study. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. Affymetrix HG-U133+2 arrays were used to quantitate gene expression levels from baseline muscle biopsies of a subset of participants (N=52). Genome-wide association study (GWAS) analysis was performed using MERLIN, while transcriptomic predictor models were developed using the R-package GALGO. RESULTS: The GWAS results showed that eight SNPs were associated with TG training-response (ΔTG) at p<9.9×10(-6), while another 31 SNPs showed p values <1×10(-4). In multivariate regression models, the top 10 SNPs explained 32.0% of the variance in ΔTG, while conditional heritability analysis showed that four SNPs statistically accounted for all of the heritability of ΔTG. A molecular signature based on the baseline expression of 11 genes predicted 27% of ΔTG in HERITAGE, which was validated in an independent study. A composite SNP score based on the top four SNPs, each from the genomic and transcriptomic analyses, was the strongest predictor of ΔTG (R(2)=0.14, p=3.0×10(-68)). CONCLUSIONS: Our results indicate that skeletal muscle transcript abundance at 11 genes and SNPs at a number of loci contribute to TG response to exercise training. Combining data from genomics and transcriptomics analyses identified a SNP-based gene signature that should be further tested in independent samples.


Subject(s)
Exercise/physiology , Triglycerides/metabolism , Adolescent , Adult , Aged , Genome-Wide Association Study , Genomics , Genotype , Humans , Middle Aged , Muscle, Skeletal/physiology , Polymorphism, Single Nucleotide/genetics , RNA/genetics , Transcriptome , Young Adult
8.
J Natl Med Assoc ; 106(1): 50-57, 2014.
Article in English | MEDLINE | ID: mdl-25684827

ABSTRACT

The Summer Institute Program to Increase Diversity (SIPID) in Health-Related Research is a career advancement opportunity sponsored by the National Heart, Lung, and Blood Institute. Three mentored programs address difficulties experienced by junior investigators in establishing independent research careers and academic advancement. Aims are to increase the number of faculty from under-represented minority groups who successfully compete for external research funding. Data were collected using a centralized data-entry system from three Summer Institutes. Outcomes include mentees' satisfaction rating about the program, grant and publications productivity and specific comments. Fifty-eight junior faculty mentees (38% male) noticeably improved their rates of preparing/submitting grant applications and publications, with a 18-23% increase in confidence levels in planning and conducting research. According to survey comments, the training received in grantsmanship skills and one-on-one mentoring were the most valuable program components. The SIPID mentoring program was highly valued by the junior faculty mentees. The program will continue in 2011-2014 as PRIDE (PRogram to Increase Diversity among individuals Engaged in health-related research). Long-term follow-up of current mentees will be indexed at five years post training (2013). In summary, these mentoring programs hope to continue increasing the diversity of the next generation of scientists in biomedical research.

9.
Genet Epidemiol ; 36(4): 340-51, 2012 May.
Article in English | MEDLINE | ID: mdl-22539395

ABSTRACT

Recent meta-analyses of European ancestry subjects show strong evidence for association between smoking quantity and multiple genetic variants on chromosome 15q25. This meta-analysis extends the examination of association between distinct genes in the CHRNA5-CHRNA3-CHRNB4 region and smoking quantity to Asian and African American populations to confirm and refine specific reported associations. Association results for a dichotomized cigarettes smoked per day phenotype in 27 datasets (European ancestry (N = 14,786), Asian (N = 6,889), and African American (N = 10,912) for a total of 32,587 smokers) were meta-analyzed by population and results were compared across all three populations. We demonstrate association between smoking quantity and markers in the chromosome 15q25 region across all three populations, and narrow the region of association. Of the variants tested, only rs16969968 is associated with smoking (P < 0.01) in each of these three populations (odds ratio [OR] = 1.33, 95% CI = 1.25-1.42, P = 1.1 × 10(-17) in meta-analysis across all population samples). Additional variants displayed a consistent signal in both European ancestry and Asian datasets, but not in African Americans. The observed consistent association of rs16969968 with heavy smoking across multiple populations, combined with its known biological significance, suggests rs16969968 is most likely a functional variant that alters risk for heavy smoking. We interpret additional association results that differ across populations as providing evidence for additional functional variants, but we are unable to further localize the source of this association. Using the cross-population study paradigm provides valuable insights to narrow regions of interest and inform future biological experiments.


Subject(s)
Chromosomes, Human, Pair 15 , Genetic Variation , Smoking/adverse effects , Adolescent , Adult , Black or African American , Aged , Aged, 80 and over , Asian People , Black People , Female , Gene Frequency , Genetics, Population , Humans , Lung Diseases/etiology , Lung Diseases/genetics , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Male , Middle Aged , Odds Ratio , Phenotype , Risk , White People
10.
Am J Epidemiol ; 176 Suppl 7: S91-8, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23035148

ABSTRACT

An elevated blood pressure (BP) response to the cold pressor test (CPT) is associated with increased risk of hypertension and cardiovascular disease. However, it is still unclear whether BP response to the CPT is a stable and reproducible trait over time. Using the same study protocol, the authors repeated the CPT 4.5 years after initial administration among 568 Han Chinese in rural northern China (2003-2005 and 2008-2009). BP was measured using a standard mercury sphygmomanometer prior to and 0, 1, 2, and 4 minutes after the participants immersed their hand in ice water (3°C-5°C) for 1 minute. Absolute BP levels and BP responses during the CPT in the initial and repeated administrations were highly correlated. For example, the correlation coefficients were 0.67, 0.73, 0.71, and 0.72 for absolute systolic BP levels at 0, 1, 2, and 4 minutes after ice-water immersion (all P 's < 0.0001). The correlation coefficients for systolic BP response were 0.41 at 0 minutes, 0.37 at 1 minute, 0.42 for maximum response, and 0.39 for the area under the curve during CPT (all P 's < 0.0001). These data indicate that BP response to the CPT is a long-term reproducible and stable characteristic in the general population.


Subject(s)
Blood Pressure/physiology , Cold Temperature , Adolescent , Adult , Blood Pressure Determination/methods , China , Female , Humans , Hypertension/diagnosis , Hypertension/physiopathology , Male , Middle Aged , Reproducibility of Results , Young Adult
11.
Am J Epidemiol ; 176 Suppl 7: S81-90, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22865701

ABSTRACT

The authors conducted a genome-wide linkage scan and positional association analysis to identify the genetic determinants of salt sensitivity of blood pressure (BP) in a large family-based, dietary-feeding study. The dietary intervention was conducted among 1,906 participants in rural China (2003-2005). A 7-day low-sodium intervention was followed by a 7-day high-sodium intervention. Salt sensitivity was defined as BP responses to low- and high-sodium interventions. Signals of the logarithm of the odds to the base 10 (LOD ≥ 3) were detected at 33-42 centimorgans of chromosome 2 (2p24.3-2p24.1), with a maximum LOD score of 3.33 for diastolic blood pressure responses to high-sodium intervention. LOD scores were 2.35-2.91 for mean arterial pressure (MAP) and 0.80-1.49 for systolic blood pressure responses in this region, respectively. Correcting for multiple tests, single nucleotide polymorphism (SNP) rs11674786 (2.7 kilobases upstream of the family with sequence similarity 84, member A, gene (FAM84A)) in the linkage region was significantly associated with diastolic blood pressure (P = 0.0007) and MAP responses (P = 0.0007), and SNP rs16983422 (2.8 kilobases upstream of the visinin-like 1 gene (VSNL1)) was marginally associated with diastolic blood pressure (P = 0.005) and MAP responses (P = 0.005). An additive interaction between SNPs rs11674786 and rs16983422 was observed, with P = 7.00 × 10(-5) and P = 7.23 × 10(-5) for diastolic blood pressure and MAP responses, respectively. The authors concluded that genetic region 2p24.3-2p24.1 might harbor functional variants for the salt sensitivity of BP.


Subject(s)
Blood Pressure/genetics , Genome-Wide Association Study , Sodium, Dietary/pharmacology , Adult , Aged , Blood Pressure/drug effects , China , Diet, Sodium-Restricted , Female , Genetic Linkage/genetics , Genotype , Humans , Lod Score , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics
13.
Eur J Appl Physiol ; 112(8): 2969-78, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22170014

ABSTRACT

Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.


Subject(s)
Chromosomes, Human, Pair 13 , Exercise Tolerance/genetics , Quantitative Trait Loci , Cardiac Output/genetics , Exercise Test , Genome-Wide Association Study , Haplotypes , Heredity , Humans , Oxygen Consumption/genetics , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Regression Analysis , Time Factors , United States/epidemiology , White People/genetics
14.
Med Sci Sports Exerc ; 54(5S): S1-S43, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35611651

ABSTRACT

The aim of the HERITAGE Family Study was to investigate individual differences in response to a standardized endurance exercise program, the role of familial aggregation, and the genetics of response levels of cardiorespiratory fitness and cardiovascular disease and diabetes risk factors. Here we summarize the findings and their potential implications for cardiometabolic health and cardiorespiratory fitness. It begins with overviews of background and planning, recruitment, testing and exercise program protocol, quality control measures, and other relevant organizational issues. A summary of findings is then provided on cardiorespiratory fitness, exercise hemodynamics, insulin and glucose metabolism, lipid and lipoprotein profiles, adiposity and abdominal visceral fat, blood levels of steroids and other hormones, markers of oxidative stress, skeletal muscle morphology and metabolic indicators, and resting metabolic rate. These summaries document the extent of the individual differences in response to a standardized and fully monitored endurance exercise program and document the importance of familial aggregation and heritability level for exercise response traits. Findings from genomic markers, muscle gene expression studies, and proteomic and metabolomics explorations are reviewed, along with lessons learned from a bioinformatics-driven analysis pipeline. The new opportunities being pursued in integrative -omics and physiology have extended considerably the expected life of HERITAGE and are being discussed in relation to the original conceptual model of the study.


Subject(s)
Cardiorespiratory Fitness , Cardiovascular Diseases , Exercise , Cardiorespiratory Fitness/physiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Computational Biology , Exercise/physiology , Genomics , Hemodynamics , Humans , Metabolomics , Proteomics
15.
Hum Genet ; 128(2): 137-43, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20473689

ABSTRACT

A large proportion of the phenotypic variation in blood pressure (BP) appears to be inherited as a polygenic trait. This study examined the association between 12 single nucleotide polymorphisms (SNPs) in the guanine nucleotide binding protein beta polypeptide 3 (GNB3) and adducin 1 alpha (ADD1) genes and systolic (SBP), diastolic (DBP), and mean arterial (MAP) BP. A total of 3,142 individuals from 636 families were recruited from rural north China, and 2,746 met the eligibility criteria for analysis. BP measurements were obtained using a random-zero sphygmomanometer. Genetic variants were determined using SNPlex assays on an automated DNA Sequencer. A mixed linear model was used to estimate the association between each SNP and BP level. After Bonferroni correction, marker rs4963516 of the GNB3 gene remained significantly associated with DBP (corrected P values = 0.006, 0.007 and 0.002 for co-dominant, additive, and recessive models, respectively) and MAP (corrected P values = 0.02, 0.049, and 0.005, respectively). Compared to carriers of the major A allele, CC homozygotes had higher mean DBP (75.81 +/- 0.62 vs. 73.46 +/- 0.25 mmHg, P = 0.0002) and MAP (91.87 +/- 0.68 vs. 89.42 +/- 0.28 mmHg, P = 0.0004) after adjusting for covariates of age, gender, BMI, study site, and room temperature during BP measurement. In summary, these data support a role for the GNB3 gene in BP regulation in the Chinese population. Future studies aimed at replicating these novel findings are warranted.


Subject(s)
Asian People/genetics , Blood Pressure/genetics , Calmodulin-Binding Proteins/genetics , Polymorphism, Single Nucleotide , Alleles , Arteries , Blood Pressure/drug effects , Calmodulin-Binding Proteins/pharmacology , China , Female , Heterotrimeric GTP-Binding Proteins , Humans , Hypotension/genetics , Male , Middle Aged , Polymorphism, Genetic , Population Groups
16.
Am J Hypertens ; 31(2): 205-211, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29036630

ABSTRACT

BACKGROUND: A resequencing study of renal epithelial sodium channel (ENaC) genes was conducted to identify rare variants associated with blood pressure (BP) salt-sensitivity. METHODS: The Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study was conducted among 1,906 participants who underwent a 7-day low-sodium followed by a 7-day high-sodium feeding-study. The 300 most salt-sensitive and 300 most salt-resistant GenSalt participants were selected for the resequencing study. Three ENaC genes (SCNN1A, SCNN1B, and SCNN1G) were resequenced using capillary-based sequencing methods. Traditional burden tests were utilized to examine association between rare variants and BP salt-sensitivity. Associations of low-frequency and common variants were tested using single-marker analyses. RESULTS: Carriers of SCNN1A rare variants had a 0.52 [95% confidence interval (CI): 0.32-0.85] decreased odds of BP salt-sensitivity compared with noncarriers. Neither SCNN1B nor SCNN1G associated with salt-sensitivity of BP in rare variant analyses (P = 0.65 and 0.48, respectively). In single-marker analyses, 3 independent common variants in SCNN1A, rs11614164, rs4764586, and rs3741914, associated with salt-sensitivity after Bonferroni correction (P = 4.4 × 10-4, 1.1 × 10-8, and 1.3 × 10-3). Each copy of the minor allele of rs4764586 was associated with a 1.36-fold (95% CI: 1.23-1.52) increased odds of salt-sensitivity, whereas each copy of the minor allele of rs11614164 and rs3741914 was associated with 0.68-fold (95% CI: 0.55-0.84) and 0.69-fold (95% CI: 0.54-0.86) decreased odds of salt-sensitivity, respectively. CONCLUSIONS: This study demonstrated for the first time a relationship between rare variants in the ENaC pathway and BP salt-sensitivity. Future replication and functional studies are needed to confirm the findings in this study. CLINICAL TRIAL REGISTRY: Trial Number NCT00721721.


Subject(s)
Blood Pressure/genetics , Epithelial Sodium Channels/genetics , Hypertension , Sodium Chloride, Dietary/metabolism , Adult , Blood Pressure Determination , Female , Genetic Predisposition to Disease , Humans , Hypertension/metabolism , Hypertension/physiopathology , Male , Polymorphism, Single Nucleotide
17.
Circ Cardiovasc Genet ; 10(6)2017 Dec.
Article in English | MEDLINE | ID: mdl-29212900

ABSTRACT

BACKGROUND: Gene-environmental interaction analysis can identify novel genetic factors for blood pressure (BP). We performed genome-wide analyses to identify genomic loci that interact with potassium to influence BP using single-marker (1 and 2 df joint tests) and gene-based tests among Chinese participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity). METHODS AND RESULTS: Among 1876 GenSalt participants, the average of 3 urine samples was used to estimate potassium excretion. Nine BP measurements were taken using a random-zero sphygmomanometer. A total of 2.2 million single nucleotide polymorphisms were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P<1.00×10-4) from GenSalt were evaluated for replication among 775 Chinese participants of the MESA (Multi-ethnic Study of Atherosclerosis). Single nucleotide polymorphism and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The 1 df tests identified interactions for ARL15 rs16882447 on systolic BP (P=2.83×10-9) and RANBP3L rs958929 on pulse pressure (P=1.58×10-8). The 2 df tests confirmed the ARL15 rs16882447 signal for systolic BP (P=1.15×10-9). Genome-wide gene-based analysis identified CC2D2A (P=2.59×10-7) at 4p15.32 and BNC2 (P=4.49×10-10) at 9p22.2 for systolic BP, GGNBP1 (P=1.18×10-8), and LINC00336 (P=1.36×10-8) at 6p21 for diastolic BP, DAB1 (P=1.05×10-13) at 1p32.2, and MIR4466 (P=5.34×10-8) at 6q25.3 for pulse pressure. The BNC2 (P=3.57×10-8) gene was also significant for mean arterial pressure. CONCLUSIONS: We identified 2 novel BP loci and 6 genes through the examination of single nucleotide polymorphism- and gene-based interactions with potassium.


Subject(s)
Blood Pressure/genetics , Genome-Wide Association Study , Potassium/pharmacology , Adult , Asian People/genetics , Blood Pressure/drug effects , Female , Humans , Male , Middle Aged , Molecular Epidemiology
18.
Am J Hypertens ; 30(5): 495-501, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28199472

ABSTRACT

BACKGROUND: The role of rare variants in blood pressure (BP) salt-sensitivity is unknown. We conducted a resequencing study of the renin-angiotensin-aldosterone system (RAAS) to identify rare variants associated with BP salt-sensitivity among participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. METHODS: The GenSalt study was conducted among 1,906 participants who underwent a 7-day low-sodium (51.3 mmol sodium/day) followed by a 7-day high-sodium feeding study (307.8 mmol sodium/day). The 300 most salt-sensitive and 300 most salt-resistant GenSalt participants were selected for the resequencing study. Seven RAAS genes were resequenced using capillary-based sequencing methods. Rare variants were tested for association with BP salt-sensitivity using traditional burden tests. Single-marker analyses were employed to test associations of low-frequency and common variants. RESULTS: Aggregate rare variant analysis revealed an association of the RAAS pathway with BP salt-sensitivity. Carriers of rare RAAS variants had a 1.55-fold [95% confidence interval (CI): 1.15, 2.10] higher odds of salt-sensitivity compared to noncarriers (P = 0.004), a finding which was significant after Bonferroni correction. A nominal association of the APLN gene with salt-sensitivity was also identified, with rare APLN variants conferring a 2.22-fold (95% CI: 1.05, 6.58) higher odds of salt-sensitivity (P = 0.03). Single-marker analyses did not identify variant-BP salt-sensitivity associations after Bonferroni adjustment. A nominal association of a low-frequency, missense RENBP variant was identified. Each minor allele of rs78377269 conferred a 2.21-fold (95% CI: 1.10, 4.42) increased odds of salt-sensitivity (P = 0.03). CONCLUSIONS: This study presents of the first evidence of a contribution of rare RAAS variants to BP salt-sensitivity. Clinical Trial RegistryTrial Number: NCT00721721.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Polymorphism, Single Nucleotide , Renin-Angiotensin System/genetics , Sodium Chloride, Dietary/adverse effects , Adult , Apelin , Carbohydrate Epimerases/genetics , Carrier Proteins/genetics , Chi-Square Distribution , China/epidemiology , Diet, Sodium-Restricted , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Hypertension/physiopathology , Intercellular Signaling Peptides and Proteins/genetics , Linear Models , Male , Middle Aged , Multivariate Analysis , Odds Ratio , Phenotype , Risk Assessment , Risk Factors , Sodium Chloride, Dietary/administration & dosage , Time Factors
19.
Am J Hypertens ; 30(1): 95-101, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27664953

ABSTRACT

BACKGROUND: Single-marker and novel gene-based methods were employed to examine the associations of the serum/glucocorticoid regulated kinases (SGK) gene family with longitudinal blood pressure (BP) changes and hypertension incidence in a family-based cohort study. METHODS: Totally, 1,768 Chinese participants from the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) follow-up study were included in the current analyses. Nine BP measures were obtained at each of 3 visits during the GenSalt follow-up study. Mixed-model and Gene-based analyses were used to examine the associations of the SGK gene family with longitudinal BP phenotypes. Bonferroni correction was applied to account for multiple testing. RESULTS: After an average 7.2-year follow-up, 32.2% (513) of participants free of hypertension at baseline developed hypertension. Four novel SNPs in the SGK1 gene were predictive of the longitudinal BP phenotypes. The major alleles of SGK1 rs1763498 and rs114414980 conferred 2.9- and 2.5-fold increased risks of hypertension development, respectively (P = 1.0×10-4 and 6.0×10-4, respectively). In addition, the major allele of SGK1 rs229133 was significantly associated with 0.4mm Hg larger annual increases in systolic BP (P = 4.2×10-4), while the major allele of rs6924468 was significantly associated with 0.2mm Hg smaller annual increases in diastolic BP (P = 4.2×10-4). Gene-based analyses revealed an association of the SGK1 gene with risk of hypertension development (P = 7.4×10-3). No evidence for the SGK2 and SGK3 genes was found. CONCLUSIONS: The findings of the current study suggest that the SGK1 gene may play a role in long-term BP regulation and hypertension incidence.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Immediate-Early Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Adult , China/epidemiology , Cohort Studies , Female , Humans , Hypertension/epidemiology , Incidence , Male , Middle Aged , Multigene Family
20.
Am J Hypertens ; 29(3): 397-404, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26224401

ABSTRACT

BACKGROUND: The aim of this study was to comprehensively test the association of genetic variants in the natriuretic peptide (NP) system with blood pressure (BP) response to dietary sodium intervention in a Chinese population. METHODS: We conducted a 7-day low-sodium intervention followed by a 7-day high-sodium intervention among 1,906 participants in rural China. BP measurements were obtained at baseline and each dietary intervention using a random-zero sphygmomanometer. Linear mixed-effect models were used to assess the associations of 48 single-nucleotide polymorphisms (SNPs) in 6 genes of NP system with BP response to dietary sodium intervention. RESULTS: SNP rs5063 in the NPPA gene and SNP rs2077386 in the NPPC gene exhibited significant associations with BP response to low-sodium dietary intervention under recessive genetic model. For rs5063, absolute mean arterial pressure responses (95% confidence interval) to the low-sodium intervention were 1.31 (-1.08, 3.70) mm Hg for TT genotype and -3.74 (-4.01, -3.46) mm Hg for CC or TC genotype, respectively (P = 4.1 × 10(-5)). Individuals with at least one copy of the C allele of rs2077386 had significantly reduction in systolic BP during the low-sodium intervention compared to those with genotype GG with responses of -5.48 (-5.83, -5.14) vs. -2.76 (-3.52, -2.00) mm Hg, respectively (P = 1.9 × 10(-13)). CONCLUSIONS: These novel findings suggested that genetic variants of NP system may contribute to the variation of BP response to sodium intervention in Chinese population. Certainly, replication of these results in other populations and further functional studies are warranted to clarify their role in the regulation of BP and hypertension.


Subject(s)
Blood Pressure/genetics , Diet, Sodium-Restricted , Natriuretic Peptides/genetics , Receptors, Atrial Natriuretic Factor/genetics , Sodium, Dietary/pharmacology , Adult , Alleles , Asian People/genetics , Atrial Natriuretic Factor/genetics , Blood Pressure/drug effects , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, C-Type/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL