Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.828
Filter
Add more filters

Publication year range
1.
Cell ; 185(23): 4249-4251, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36368302

ABSTRACT

In this issue of Cell, Xie et al. identify a gut-to-brain pathway that triggers retching after toxic food ingestion or emetic agent administration. Their results shed light on how peripheral signals reach the brain to orchestrate appropriate behavioral responses and facilitate learning to prevent repeated ingestion of harmful substances.


Subject(s)
Intestines , Vomiting , Humans , Vomiting/prevention & control
2.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36368323

ABSTRACT

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Subject(s)
Chronic Pain , Transcriptome , Mice , Animals , DNA , RNA , Gels
3.
Cell ; 185(12): 2148-2163.e27, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35584702

ABSTRACT

Zinc (Zn) is an essential micronutrient and cofactor for up to 10% of proteins in living organisms. During Zn limitation, specialized enzymes called metallochaperones are predicted to allocate Zn to specific metalloproteins. This function has been putatively assigned to G3E GTPase COG0523 proteins, yet no Zn metallochaperone has been experimentally identified in any organism. Here, we functionally characterize a family of COG0523 proteins that is conserved across vertebrates. We identify Zn metalloprotease methionine aminopeptidase 1 (METAP1) as a COG0523 client, leading to the redesignation of this group of COG0523 proteins as the Zn-regulated GTPase metalloprotein activator (ZNG1) family. Using biochemical, structural, genetic, and pharmacological approaches across evolutionarily divergent models, including zebrafish and mice, we demonstrate a critical role for ZNG1 proteins in regulating cellular Zn homeostasis. Collectively, these data reveal the existence of a family of Zn metallochaperones and assign ZNG1 an important role for intracellular Zn trafficking.


Subject(s)
Metalloendopeptidases/metabolism , Zinc , Animals , GTP Phosphohydrolases/metabolism , Homeostasis , Metallochaperones/metabolism , Metalloproteins/genetics , Mice , Zebrafish/metabolism , Zinc/metabolism
4.
Cell ; 184(7): 1804-1820.e16, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33691139

ABSTRACT

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes and CD8+ T cells for optimal clinical and virological benefit. Thus, potently neutralizing mAbs utilize Fc effector functions during therapy to mitigate lung infection and disease.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 , Immunoglobulin Fc Fragments/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CHO Cells , COVID-19/immunology , COVID-19/therapy , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , SARS-CoV-2/immunology , Vero Cells , Viral Load
5.
Cell ; 177(3): 766-781.e24, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955882

ABSTRACT

During autophagy, vesicle dynamics and cargo recruitment are driven by numerous adaptors and receptors that become tethered to the phagophore through interactions with lipidated ATG8/LC3 decorating the expanding membrane. Most currently described ATG8-binding proteins exploit a well-defined ATG8-interacting motif (AIM, or LC3-interacting region [LIR]) that contacts a hydrophobic patch on ATG8 known as the LIR/AIM docking site (LDS). Here we describe a new class of ATG8 interactors that exploit ubiquitin-interacting motif (UIM)-like sequences for high-affinity binding to an alternative ATG8 interaction site. Assays with candidate UIM-containing proteins together with unbiased screens identified a large collection of UIM-based ATG8 interactors in plants, yeast, and humans. Analysis of a subset also harboring ubiquitin regulatory X (UBX) domains revealed a role for UIM-directed autophagy in clearing non-functional CDC48/p97 complexes, including some impaired in human disease. With this new class of adaptors and receptors, we greatly extend the reach of selective autophagy and identify new factors regulating autophagic vesicle dynamics.


Subject(s)
Autophagy-Related Protein 8 Family/metabolism , Autophagy , Microtubule-Associated Proteins/metabolism , Amino Acid Motifs , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Autophagy-Related Protein 8 Family/chemistry , Binding Sites , Humans , Microtubule-Associated Proteins/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment
6.
Cell ; 177(5): 1293-1307.e16, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31031008

ABSTRACT

The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.


Subject(s)
Hypothalamus/metabolism , Mesencephalon/metabolism , Neurons/metabolism , Sleep Stages/physiology , Animals , Cholecystokinin/metabolism , Hypothalamus/cytology , Mesencephalon/cytology , Mice , Mice, Transgenic , Neurons/cytology , Optogenetics
7.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031003

ABSTRACT

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
8.
Cell ; 174(3): 730-743.e22, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30033368

ABSTRACT

Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience. VIDEO ABSTRACT.


Subject(s)
Brain Mapping/methods , Connectome/methods , Nerve Net/anatomy & histology , Animals , Brain/anatomy & histology , Brain/diagnostic imaging , Dendrites , Drosophila melanogaster/anatomy & histology , Female , Microscopy, Electron/methods , Mushroom Bodies , Neurons , Smell/physiology , Software
9.
Cell ; 168(4): 571-574, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187279

ABSTRACT

Curative therapies are most successful when cancer is diagnosed and treated at an early stage. We advocate that technological advances in next-generation sequencing of circulating, tumor-derived nucleic acids hold promise for addressing the challenge of developing safe and effective cancer screening tests.


Subject(s)
DNA/blood , High-Throughput Nucleotide Sequencing/methods , Neoplasms/diagnosis , Neoplasms/genetics , Sequence Analysis, DNA/methods , Early Detection of Cancer , Humans
11.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38640894

ABSTRACT

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase , DNA-Directed DNA Polymerase/metabolism , DNA Replication , DNA, Single-Stranded/genetics , DNA Helicases/genetics , DNA End-Joining Repair
12.
Cell ; 166(3): 755-765, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27372738

ABSTRACT

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Subject(s)
Neoplasm Proteins/genetics , Neoplasms, Cystic, Mucinous, and Serous/genetics , Ovarian Neoplasms/genetics , Proteome , Acetylation , Chromosomal Instability , DNA Repair , DNA, Neoplasm , Female , Gene Dosage , Humans , Mass Spectrometry , Phosphoproteins/genetics , Protein Processing, Post-Translational , Survival Analysis
13.
Annu Rev Genet ; 56: 207-228, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36028228

ABSTRACT

DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.


Subject(s)
DNA-Directed DNA Polymerase , Neoplasms , Animals , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA End-Joining Repair/genetics , DNA , DNA Damage/genetics , Neoplasms/genetics , DNA Polymerase theta
14.
CA Cancer J Clin ; 73(3): 320-338, 2023.
Article in English | MEDLINE | ID: mdl-36512303

ABSTRACT

As many countries experience population aging, patients with cancer are becoming older and have more preexisting comorbidities, which include prevalent, age-related, chronic conditions such as dementia. People living with dementia (PLWD) are vulnerable to health disparities, and dementia has high potential to complicate and adversely affect care and outcomes across the cancer trajectory. This report offers an overview of dementia and its prevalence among patients with cancer and a summary of the research literature examining cancer care for PLWD. The reviewed research indicates that PLWD are more likely to have cancer diagnosed at an advanced stage, receive no or less extensive cancer treatment, and have poorer survival after a cancer diagnosis. These cancer disparities do not necessarily signify inappropriately later diagnosis or lower treatment of people with dementia as a group, and they are arguably less feasible and appropriate targets for care optimization. The reviewed research indicates that PLWD also have an increased risk of cancer-related emergency presentations, lower quality processes of cancer-related decision making, accessibility-related barriers to cancer investigations and treatment, higher experienced treatment burden and higher caregiver burden for families, and undertreated cancer-related pain. The authors propose that optimal cancer care for PLWD should focus on proactively minimizing these risk areas and thus must be highly person-centered, with holistic decision making, individualized reasonable adjustments to practice, and strong inclusion and support of family carers. Comprehensive recommendations are made for clinical practice and future research to help clinicians and providers deliver best and equitable cancer care for PLWD and their families.


Subject(s)
Dementia , Neoplasms , Humans , Dementia/complications , Dementia/diagnosis , Dementia/therapy , Caregivers , Neoplasms/complications , Neoplasms/therapy
15.
Cell ; 162(2): 363-374, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186190

ABSTRACT

Animals learn to avoid harmful situations by associating a neutral stimulus with a painful one, resulting in a stable threat memory. In mammals, this form of learning requires the amygdala. Although pain is the main driver of aversive learning, the mechanism that transmits pain signals to the amygdala is not well resolved. Here, we show that neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus are critical for relaying pain signals to the central nucleus of amygdala and that this pathway may transduce the affective motivational aspects of pain. Genetic silencing of CGRP neurons blocks pain responses and memory formation, whereas their optogenetic stimulation produces defensive responses and a threat memory. The pain-recipient neurons in the central amygdala expressing CGRP receptors are also critical for establishing a threat memory. The identification of the neural circuit conveying affective pain signals may be pertinent for treating pain conditions with psychiatric comorbidities.


Subject(s)
Amygdala/physiology , Neural Pathways , Neurons/physiology , Pain/physiopathology , Animals , Behavior, Animal , Calcitonin/genetics , Calcitonin Gene-Related Peptide/metabolism , Conditioning, Psychological , Learning , Parabrachial Nucleus/physiology , Protein Precursors/genetics
16.
Nature ; 629(8014): 1133-1141, 2024 May.
Article in English | MEDLINE | ID: mdl-38750368

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Subject(s)
Dizocilpine Maleate , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Male , Mice , Rats , Brain Stem/metabolism , Brain Stem/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
17.
Cell ; 157(6): 1292-1308, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24906148

ABSTRACT

Beige fat, which expresses the thermogenic protein UCP1, provides a defense against cold and obesity. Although a cold environment is the physiologic stimulus for inducing beige fat in mice and humans, the events that lead from the sensing of cold to the development of beige fat remain poorly understood. Here, we identify the efferent beige fat thermogenic circuit, consisting of eosinophils, type 2 cytokines interleukin (IL)-4/13, and alternatively activated macrophages. Genetic loss of eosinophils or IL-4/13 signaling impairs cold-induced biogenesis of beige fat. Mechanistically, macrophages recruited to cold-stressed subcutaneous white adipose tissue (scWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production, factors required for browning of scWAT. Conversely, administration of IL-4 to thermoneutral mice increases beige fat mass and thermogenic capacity to ameliorate pre-established obesity. Together, our findings have uncovered the efferent circuit controlling biogenesis of beige fat and provide support for its targeting to treat obesity.


Subject(s)
Adipose Tissue, Brown/metabolism , Eosinophils/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Macrophages/metabolism , Signal Transduction , Adipocytes, Brown/metabolism , Animals , Catecholamines/metabolism , Cold Temperature , Interleukin-13/genetics , Interleukin-4/genetics , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Obesity/metabolism , Receptors, CCR2/metabolism , STAT6 Transcription Factor/metabolism , Thermogenesis
18.
Nature ; 613(7945): 775-782, 2023 01.
Article in English | MEDLINE | ID: mdl-36442503

ABSTRACT

CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.


Subject(s)
CRISPR-Cas Systems , DNA Transposable Elements , Gene Editing , Holoenzymes , Multiprotein Complexes , RNA, Guide, CRISPR-Cas Systems , Transposases , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA Transposable Elements/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Gene Editing/methods , Transposases/chemistry , Transposases/metabolism , Transposases/ultrastructure , RNA, Guide, CRISPR-Cas Systems/genetics , Holoenzymes/chemistry , Holoenzymes/metabolism , Holoenzymes/ultrastructure , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Cryoelectron Microscopy , Ribosome Subunits/chemistry , Ribosome Subunits/metabolism , Ribosome Subunits/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure
19.
Nature ; 621(7978): 289-294, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37704764

ABSTRACT

Reaction rates at spatially heterogeneous, unstable interfaces are notoriously difficult to quantify, yet are essential in engineering many chemical systems, such as batteries1 and electrocatalysts2. Experimental characterizations of such materials by operando microscopy produce rich image datasets3-6, but data-driven methods to learn physics from these images are still lacking because of the complex coupling of reaction kinetics, surface chemistry and phase separation7. Here we show that heterogeneous reaction kinetics can be learned from in situ scanning transmission X-ray microscopy (STXM) images of carbon-coated lithium iron phosphate (LFP) nanoparticles. Combining a large dataset of STXM images with a thermodynamically consistent electrochemical phase-field model, partial differential equation (PDE)-constrained optimization and uncertainty quantification, we extract the free-energy landscape and reaction kinetics and verify their consistency with theoretical models. We also simultaneously learn the spatial heterogeneity of the reaction rate, which closely matches the carbon-coating thickness profiles obtained through Auger electron microscopy (AEM). Across 180,000 image pixels, the mean discrepancy with the learned model is remarkably small (<7%) and comparable with experimental noise. Our results open the possibility of learning nonequilibrium material properties beyond the reach of traditional experimental methods and offer a new non-destructive technique for characterizing and optimizing heterogeneous reactive surfaces.

20.
Mol Cell ; 81(7): 1534-1547.e4, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33577776

ABSTRACT

Cancers with hereditary defects in homologous recombination rely on DNA polymerase θ (pol θ) for repair of DNA double-strand breaks. During end joining, pol θ aligns microhomology tracts internal to 5'-resected broken ends. An unidentified nuclease trims the 3' ends before synthesis can occur. Here we report that a nuclease activity, which differs from the proofreading activity often associated with DNA polymerases, is intrinsic to the polymerase domain of pol θ. Like the DNA synthesis activity, the nuclease activity requires conserved metal-binding residues, metal ions, and dNTPs and is inhibited by ddNTPs or chain-terminated DNA. Our data indicate that pol θ repurposes metal ions in the polymerase active site for endonucleolytic cleavage and that the polymerase-active and end-trimming conformations of the enzyme are distinct. We reveal a nimble strategy of substrate processing that allows pol θ to trim or extend DNA depending on the DNA repair context.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA-Directed DNA Polymerase/metabolism , DNA/metabolism , Endonucleases/metabolism , Metals/metabolism , Cell Line , DNA/genetics , DNA-Directed DNA Polymerase/genetics , Endonucleases/genetics , Humans , DNA Polymerase theta
SELECTION OF CITATIONS
SEARCH DETAIL